
ECE 471 – Embedded Systems
Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Midterm on Friday, the 18th, in class

• Am trying to grade all homeworks by then

• HW#6 will be posted, have two weeks

• Hang on to displays, needed for HW#9

1



Midterm Notes

• The midterm will be in-person during class time

• Closed book/notes but you are allowed one page

(8.5”x11”) full of notes if you want

2



Midterm Content

• Be sure you know the characteristics of an embedded

system, and can make an argument about whether a

system is one or not.

◦ Inside of something (embedded)

◦ Fixed-purpose

◦ Resource constrained

◦ Sensor I/O

◦ Real time constraints (if you use this, be sure you can

explain)

3



• Benefits/downsides of using an operating system on an

embedded device

◦ Benefits: “Layer of Abstraction”

◦ Downsides: overhead, timing

• C code

◦ Have you look at some code and know what it is doing

◦ Fill in missing comments

◦ Look at code and find bugs

◦ Mostly know what file I/O, loops, usleep, open/ioctl

(things we’ve done in the homeworks)

• Code Density

4



◦ Why is dense code good in embedded systems?

◦ Know why ARM introduced THUMB/THUMB2

• GPIO & i2c

◦ Know some of its limitations (speeds, length of wires,

number of wires, etc)

◦ Don’t need to know the raw protocol

◦ Know the Linux interface (open, ioctl, write) and be

familiar with how those system calls work

• Realtime won’t be on this midterm

5



Project Preview

• Posted a PDF with full details to the website

• Can work in groups

• Embedded system (any type, not just Pi)

Pi Pico, Beagleboard, Orange Pi, 271 STM boards,

TS-7600, etc.

• Written in any language (asm, C, python, C++, Java,

Rust, etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

6



• I have a large amount of i2c, spi, and other devices that

you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Note: this will have to be distinct from your ECE498 or

senior projects

• Will be a final writeup, and then a short minute

presentation and demo in front of the class during last

week of classes.

• Deadlines:

◦ November 8: pick topic (send e-mail with group

7



members and preliminary topic)

◦ November 25: progress report (e-mail with summary,

how it’s going, and which day you’d prefer to present)

◦ Last week of classes: project presenations

◦ December 20: Writeup due

8



Homework #4 Error Checking

• What do you do if there’s an error?

• Ignore it? Why could that be bad?

• Retry until it succeeds?

• Print an error message and continue?

Can you continue?

What if continuing with a bad file descriptor breaks

things?

What if printing too many error messages fills up a log,

swamps the screen, hides other errors?

9



• Good error message

Can’t be confused with valid input (airlock)

If displayed to user, make it easy to understand

• Print an error message and exit?

What if it’s a critical system?

• Crashing is almost never the right answer.

• Can get more info on error with errno / strerror()

10



Homework #4 Permissions

• We haven’t really discussed Linux permissions

• List file, “user” ”group” ”all”

• drwxr-xr-x

• Often in octal, 777 means everyone access

• Devices under /dev or /sysfs might be set to only root

or superuser

• Traditional UNIX /dev you can set with chown (to set

user/group) or chmod (to set permissions)

• Group under /etc/group, so gpio group

11



• Why is it better than using “sudo”? Why might I as

grader not want to run your code using “sudo” if I can

avoid it?

• How to set up sudo? /etc/sudoers file

12



Homework #4 – LED Blinking

• Blink frequency. Remember, 1Hz is 500ms on / 500ms

off

not 500us, not 1s

• Blink correct GPIO. Does it matter? Want to fire

engines, not engage self destruct.

13



Homework #4 – Switch

• Debouncing

◦ 100ms or even 10ms is long time

◦ Tricky as we are detecting levels not edges here

◦ Reading and only reporting if you say have 3 in a row

of save val

◦ Reading, sleeping a bit, then report the value after has

settled

◦ Just sleeping a long time after any change? If a short

glitch happens this might misreport.

14



◦ Sleep too long, might miss events

◦ Debounce if using interrupt-driven code

In that case debouncing might be to ignore repeated

changes if they happen too close together

15



Homework #4 – Something Cool

• How can you read/write at same time (say to let switch

activate LED)

• Need to make copy of data structures

• If you do re-use, make sure you close(), especially if you

open multiple times. Either will get EBUSY or else fd

leak

16



Homework #4 Question – usleep()

• Less resources (not busy sleeping),

• cross-platform (not speed-of-machine-dependent)

• compiler won’t remove

• other things can run,

• power saving

• Be careful saying accuracy! usleep() guarantees a

minimum time delay, but it is best effort how long

the delay actually is. So if you really need *exact* time

delays you probably want some other interface.

17



Homework #4 Question – OS

• provides layer of abstraction

• In this case, not having to bitbang the interface or know

low-level addresses, portability among machines.

18



Homework #4 Question – Linux stuff

• 6.a Machines from dmesg: 2023: Pi4 (12) Pi3B+ (9)

Pi3B (1) Pi2B (3) dmesg a good place to find error

messages, etc. grep
• 6.b Kernel versions. Current Linus kernel (upstream) is
6.0
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv7l GNU/Linux\\

Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2023: 6.1.62 (1) 6.1.21 (18) 5.15 (2) 5.10(1) 64-bit (7)

• 6.c. Disk space. Why -h? Human readable. what does

19



that mean? Why is it not the default? At least Linux

defaults to 1kB blocks (UNIX was 512) Lots of large

disks.

20


