ECE 471 — Embedded Systems
Lecture 19

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 October 2024

https://web.eece.maine.edu/~vweaver

Announcements

e Keep thinking about projects
e Don't forget HW#6

e No office hours Thursday, stuck in a meeting

Is Regular Linux a RTOS

e Not really

e Can do priorities (“nice”) but the default ones are not
RT.

e Aside, “nice” comes from old UNIX multi-user days,
when you could be nice and give your long-running jobs
a low-priority so they wouldn't interfere with other people
doing interactive tasks

Is there an RT Version of Linux?

e For years there were outside patches

e You'd have to special patch and compile a kernel to get
support

e With the upcoming 6.12 release all the patches will be
merged and you can get better RT support

e It still might not be enabled by default on most distros

PREEMPT Kernel

e Linux PREEMPT_RT

e [aster response times

e Remove all unbounded latencies

e Change locks and interrupt threads to be pre-emptible

e Have been gradually merging changes upstream

Typical kernel, when can you pre-empt

e WWhen user code running

e \When a system call or interrupt happens

e When kernel code blocks on mutex (lock) or voluntarily
yields

e If a high priority task wants to run, and the kernel is
running, it might be hundreds of milliseconds before you
get to run

e Pre-empt patch makes it so almost any part of kernel can
be stopped (pre-empted). Also moves interrupt routines

-y 5

into pre-emptible kernel threads.

Linux PREEMPT Kernel

e What latencies can you get?
10-30us on some x86 machines

e Depends on firmware; SMI interrupts (secret system
mode, can't be blocked, emulate USB, etc.)
Slow hardware; CPU frequency scaling; nohz

e Special patches, recompile kernel

Linux Real Time Priorities

e Linux Nice: -20 to 19 (lowest), use nice command
e Real Time: 0 to 99 (highest)

e Appears in ps as 0 to 1397

e Can set with chrt command (see HW+6)

Co-operative real-time Linux

e Xenomai

e Linux run as side process, sort of like hypervisor

Real Time Wrapup

Some coding tips on how to get the best real time behavior
out of your code

/Y 10

Complications — Interrupts

e \Why are interrupts slow?

e Shared lines,

have to run all handlers

e On Cortex-A systems have one IRQ line, have to query
all to see what caused it. Cortex-M improves this by
having dedicated vector for each piece of hardware

e When can they not be pre-empted? I|IRQ disabled? If

a driver real

y wanted to pause 1ms for hardware to be

ready, would
sleep

often turn off IRQ and spin rather than

11

e Higher priority IRQs? FIR on ARM?
e Top Halves / Bottom Halves

12

Complications — Threading

e A thread is a unit of executing code with its own program
counter and own stack
e It's possible to have one program/process have multiple
threads of execution, sharing the same memory space
o Why?
o Traditionally, to let part of program keep running when
another part waiting on 1/O (gui keep drawing while

waiting for input, sound playing in background during
game, etc)

/Y 13

o Lets one program spread work across multiple cores
e This complicates the scheduler, and also makes priority
more complex

-y 14

Complications — Locking

e When shared hardware /software and more than one thing
might access at once

e Example:
o thread 1 read temperature, write to temperature

variable

o thread 2 read temperature variable to write to display
o each digit separate byte

O

O

emperature was 79.9, but new is 80.0

hread 1 writing this

15

o What if Thread 2 reads part-way through? Could you
get 89.97
e Is this only a SMP problem? What about interrupts?

/Y 16

Scheduler Complications — Locking

e Previous was example of Race Condition (two threads
“racing” to access same memory)
e How do you protect this? With a lock
o Special data structure, allows only one thread inside
the locked area at a time
o This is called a “critical section”

lock (&temp_lock); lock (&temp_lock);
write_display () ; read_temperature () ;
unlock (&temp_lock) ; unlock (&temp_lock) ;

-y 17

Scheduler Complications — Locking

e Can you have race conditions on a single core?
o Yes, with interrupts
o On simple systems you can just disable interrupts
during critical section
o Usually can’t do that if have an OS

-y 18

Scheduler Complications — Lock
Implementation

e Implemented with special instructions, in assembly
anguage

e Usually you will use a library, like pthreads
e mutex/spinlock
e Atomicity

/Y 19

Memory Allocation in Embedded Systems

-y 20

Memory Allocation — Dynamic

e Using malloc() /calloc() or new()
e In C have to make sure you free() at end
e Downsides:
o What to do if fails?
Can you handle that? What if error code also tries to
alloc?
o Timing overhead? Is it deterministic?
Especially problem with high-level languages and
garbage collection

-y 21

o Fragmentation: when there's plenty of RAM free but
it's in small chunks when you need a large chunk

-y 2

Memory Allocation — Static

e Allocate all memory you need at startup

e [ail early

e This isn't always possible, but avoids issues with failure,
overhead, etc.

e Free RTOS (newer) allows static allocation at compile
time

-y 23

Linux Memory Issues

e Even if you statically allocate memory, on system with
virtual memory it might swap out to disk
e [his can suddenly make your code unexpectedly slower,
ruin real-time performance
e Can you prevent this?
o mlockall() syscall can lock memory so it stays in
RAM, never goes to disk
o So at start of program, allocate RAM, touch it (or
prefault) to bring it in, then mlock() it

-y 24

Next up is SPI

Start early on it as there's more than one lecture of material

-y 25

