
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Keep thinking about projects

• Don’t forget HW#6

• No office hours Thursday, stuck in a meeting

1



Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

• Aside, “nice” comes from old UNIX multi-user days,

when you could be nice and give your long-running jobs

a low-priority so they wouldn’t interfere with other people

doing interactive tasks

2



Is there an RT Version of Linux?

• For years there were outside patches

• You’d have to special patch and compile a kernel to get

support

• With the upcoming 6.12 release all the patches will be

merged and you can get better RT support

• It still might not be enabled by default on most distros

3



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

4



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

5



into pre-emptible kernel threads.

6



Linux PREEMPT Kernel

• What latencies can you get?

10-30us on some x86 machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB, etc.)

Slow hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

7



Linux Real Time Priorities

• Linux Nice: -20 to 19 (lowest), use nice command

• Real Time: 0 to 99 (highest)

• Appears in ps as 0 to 139?

• Can set with chrt command (see HW#6)

8



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

9



Real Time Wrapup

Some coding tips on how to get the best real time behavior

out of your code

10



Complications – Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• On Cortex-A systems have one IRQ line, have to query

all to see what caused it. Cortex-M improves this by

having dedicated vector for each piece of hardware

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

11



• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

12



Complications – Threading

• A thread is a unit of executing code with its own program

counter and own stack

• It’s possible to have one program/process have multiple

threads of execution, sharing the same memory space

• Why?

◦ Traditionally, to let part of program keep running when

another part waiting on I/O (gui keep drawing while

waiting for input, sound playing in background during

game, etc)

13



◦ Lets one program spread work across multiple cores

• This complicates the scheduler, and also makes priority

more complex

14



Complications – Locking

• When shared hardware/software and more than one thing

might access at once

• Example:

◦ thread 1 read temperature, write to temperature

variable

◦ thread 2 read temperature variable to write to display

◦ each digit separate byte

◦ Temperature was 79.9, but new is 80.0

◦ Thread 1 writing this

15



◦ What if Thread 2 reads part-way through? Could you

get 89.9?

• Is this only a SMP problem? What about interrupts?

16



Scheduler Complications – Locking

• Previous was example of Race Condition (two threads

“racing” to access same memory)

• How do you protect this? With a lock

◦ Special data structure, allows only one thread inside

the locked area at a time

◦ This is called a “critical section”
lock(& temp_lock ); lock(& temp_lock );

write_display (); read_temperature ();

unlock (& temp_lock ); unlock (& temp_lock );

17



Scheduler Complications – Locking

• Can you have race conditions on a single core?

◦ Yes, with interrupts

◦ On simple systems you can just disable interrupts

during critical section

◦ Usually can’t do that if have an OS

18



Scheduler Complications – Lock
Implementation

• Implemented with special instructions, in assembly

language

• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

19



Memory Allocation in Embedded Systems

20



Memory Allocation – Dynamic

• Using malloc()/calloc() or new()

• In C have to make sure you free() at end

• Downsides:

◦ What to do if fails?

Can you handle that? What if error code also tries to

alloc?

◦ Timing overhead? Is it deterministic?

Especially problem with high-level languages and

garbage collection

21



◦ Fragmentation: when there’s plenty of RAM free but

it’s in small chunks when you need a large chunk

22



Memory Allocation – Static

• Allocate all memory you need at startup

• Fail early

• This isn’t always possible, but avoids issues with failure,

overhead, etc.

• Free RTOS (newer) allows static allocation at compile

time

23



Linux Memory Issues

• Even if you statically allocate memory, on system with

virtual memory it might swap out to disk

• This can suddenly make your code unexpectedly slower,

ruin real-time performance

• Can you prevent this?

◦ mlockall() syscall can lock memory so it stays in

RAM, never goes to disk

◦ So at start of program, allocate RAM, touch it (or

prefault) to bring it in, then mlock() it

24



Next up is SPI

Start early on it as there’s more than one lecture of material

25


