
ECE 471 – Embedded Systems
Lecture 22

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Don’t leave HW#7 to the last minute!

1



Firmware

• Software – code

• Firmware – low level code closely tied to hardware, often

difficult (or impossible) to change

• Hardware – the physical device (can throw it out the

window)

2



System Booting

3



Boot Firmware

Provides booting, configuration/setup, sometimes provides

rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.

Often mysterious bugs, only tested under Windows, etc.

• BIOS – legacy 16-bit interface on x86 machines

• UEFI – Unified Extensible Firmware Interface

ia64, x86, ARM. From Intel. Replaces BIOS

• OpenFirmware – old macs, SPARC

• LinuxBIOS

4



Boot Firmware Aside

• Tell story of doing spread spectrum on Progear webpad

but early in BIOS so doing i2c in assembly language with

no RAM configured yet

5



Bootloaders

• Firmware doesn’t usually directly load Operating System

• Bootloader (relatively simple code, just smart enough to

load OS and jump to it) is loaded first

• Bootloader is often on a very simple filesystem (such as

FAT) as the code has to be simple (possibly even written

in assembly language)

• Bootloader is often just complex enough to load OS

kernel from disk/network/etc and jump to it

6



Raspberry Pi Booting

• Unusual – GPU handles it

• Small amount of firmware on SoC

• ARM chip brought up inactive (in reset)

• Videocore loads first stage from ROM

7



Raspberry Pi Booting (pre pi4)

• Videocore reads bootcode.bin from FAT partition on

SD card into L2 cache.

It’s actually a RTOS (real time OS) in own right

“ThreadX” (50k)

• This runs on videocard, enables SDRAM, then loads

start.elf (3M)

• This initializes things, the loads and boots Linux onto

ARM chip kernel/kernel7/kernel7l/kernel8.img.

(also reads some config files there first) (4M)

8



Pi4 booting

• https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

• SPI EEPROM holds equivalent of bootcode.bin, no

longer read from partition

• Why? SDRAM, PCIe USB, etc are more complex

• Supports network and USB booting which is much more

complex than just loading a file off of SD card

9

https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md


Typical ARM booting

• The UBoot bootloader is common

• ARM chip runs first-stage boot loader (often MLO)

• Then loads second-stage (uboot)

10



Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?

11



◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size

12



Why a FAT Partition?

• /boot on Pi is a legacy (40+ years old) File-Allocation

Table (FAT) filesystem

• Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

• The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition

13



Boot Methods

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

14



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

15



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

16



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

17



to describe all the hardware available. Thus kernel much

more generic

• ARM servers use ACPI for same thing (from x86) mostly

because of Microsoft

18



More Firmware

19



Quick Review of System Startup

• On bare-metal machine, embedded device jumps to entry

point and immediately runs your code

• When running an OS this is a bit more complicated

20



Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init (systemd?)

21



• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

22



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader (ld.so)

• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. (wait())

23



Otherwise, init.

24



Aside about Shared vs Static Libraries

• Shared libraries, only need one copy of code on disk and

in memory

◦ Good for embedded system (less room needed)

◦ Good for security updates (only need to update lib,

not every program using it

• Static libraries, all libraries included

◦ No dependencies

• These days maybe containers, docker, kubertenes

• Also Flatpack, Snap. Why? Stability, Know package

25



will work on all distributions, Not have to install

dependencies

• Can use ldd to view library usage

26


