
ECE 471 – Embedded Systems
Lecture 25

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 November 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#8

• Project ideas due Friday: even if you’ve told me about

it, send an e-mail if you haven’t yet (note this is worth

points on your project grade)

• No class Monday (Veterans’ Day)

1

Quick Rundown of Project Topic
Possibilities

• There’s a list of possible projects and a link to past

projects toward the end of the assignment pdf

• There’s also a list of parts. Lots of sensors, displays, and

other things available

• If you do want to borrow parts, give me a bit of warning

as sometimes can take a bit to find it and make sure it’s

in working condition

2

Signed Firmware

• Best you can do is trust it to be the same firmware

released by your vendor (you still have to trust them)

• Use cryptographic signing. Hardware will only run code

“signed” by a trusted entity.

• A signed firmware can run a signed bootloader which

can run a signed operating system which can run signed

apps

3

Signed Firmware Tradeoffs

• Downside: no longer general purpose, average person

cannot run code they wrote unless they can get it signed

• Code still has to be well written. “jailbreaks” on phones

and video game consoles are due to trusted code having

bugs and then jumping into unsigned code.

• Will you still be able to run Linux?

Trust Microsoft to keep signing bootloader for us?

• Walled gardens, restricted App stores (see Apple / EPIC

lawsuit)

4

• Maybe makes sense if the firmware in your microwave

locked down, but also might mean no one can ever fix it

5

Signed Firmware on “General Purpose”
Computers

• Hardware manufacturer has keys that only allow booting

trusted signed boot firmware (UEFI)

◦ Signed UEFI only allows booting trusted signed

bootloader

◦ Signed bootloader only allows booting trusted signed

operating system

◦ Signed operating system only allows signed device

drivers

6

◦ Signed operating system only allows running signed

apps

• Already here in a lot of ways

◦ Get warnings if MacOS apps compiled/released by

someone without a signature

◦ Windows 12 requiring hardware with TPM hardware

◦ Some smartphones and game systems have been here

a while

◦ Linux on trusted hardware, Microsoft owns the keys

and for now will sign a bootloader that will run Linux.

Do we trust them?

7

Signed Firmware Tradeoffs

• Right to Repair Laws

• People concerned that car repair and cell phone repair

becoming impossible as the companies lock things down

with micocontrollers so you can only use officially

approved parts

• Actually tractors and farm equipment big deal too

• Maine Ballot initiative on this November 2023

8

Firmware on Desktop/Laptop Systems

• What is the Pi GPU doing?

• What about the T2 processor on macs?

• New for ARMv8: ARM Trusted Firmware (ATF). Two

standards, vendors have possibly made a mess of it

already.

• Other platforms have it too. DRM to keep you from

copying movies or video games.

• Windows 11 requiring TPM2 module

9

Firmware Hacking

• How can you figure out what the firmware is doing?

• Reverse engineering

• Looking for Security Issues

• Bypassing security measures

10

Firmware Security

• Encryption, but key has to live somewhere

◦ If it’s in ROM or RAM, can be dumped unless careful

◦ Also might travel bus in open (original Xbox)

◦ Decapping, people dissolve tops off chips and look at

with microscope to see contents

• Extra logic gates (work by profs here at UMaine)

• Glitching

◦ If give improper power (too little/too much),

temperature (too cold/too hot), noise/sparks, etc, can

11

cause code to jump to places it shouldn’t

• Poor user code

◦ Save game bugs popular cause of jailbreaks on consoles

◦ Console code can be super tight but if you sign a game

from a customer and it has a bug, all might be lost

12

Locking down Hardware

• Many embedded boards, like STM32, you can “blow the

fuses” after programming so that you can’t read out or

re-flash ROM

• Recent news: locked down STM32 boards, but when

debugger hooked up still shows address of interrupts.

What if move interrupt table into protected code and

trigger interrupt? Code appears as interrupt address?

13

Why Lock Down Hardware

• Companies say it’s for safety, security. Are there other

reasons?

◦ Profit. Can they lock you into one phone vendor?

Lock you into one app store?

◦ Secrecy. Don’t want secrets of how their code works

getting out.

◦ “Piracy”. Companies super worried you’ll save video /

music / games and then copy to your friends without

paying for them. Digital Rights Management (DRM)

14

Question

• Instead of epoxying shut USB, just have OS ignore any

USB ports?

◦ In theory you could do that. Which is cheaper,

unskilled labor epoxying USB or else writing your own

kernel (or convincing Microsoft) to disable USB?

◦ According to spec if OS is ignoring USB, are you safe?

◦ (Ignoring the possibility of a USB device with super-

capacitors on board to explode your system)

◦ Past DMA attacks with Firewire which could bypass

15

OS and read/write memory

◦ What if hardware vendor for whatever reason talks to

the USB device even though OS hasn’t asked it to? It

probably shouldn’t, but how can you audit that? What

about the firmware on the USB controller itself?

◦ The USB controller hooks up to a main CPU bus

somehow, maybe over PCIe, maybe directly to CPU.

It can potentially do lots of sneaky things.

◦ Why would there even be a controller for USB? Well

when you plug in has to negotiate power, speed, and

other stuff too. Probably a microcontroller

16

◦ It all depends how paranoid you want to be

◦ Even things like sandboxes and if you have all the

code, can you *prove* the code is correct? That the

compiler is trustworthy? This is actually a field of

study, trying to prove code is correct. It’s not trivial.

◦ Doesn’t matter how good your software is if SW/HW

compromised

◦ Can you analyze all 10 billion transistors in modern

CPU?

◦ USB keybord needs to work, even w/o OS

17

HW#8 – C string review

• String manipulation is famously horrible in C.

• There are many ways to get the ”YES” and ”t=24125”

values out of the text file for HW#8.

• Any way you choose is fine.

18

C String Review

• This is tricky to get right

• It’s relevant to Computer Security, the next topic we will

cover

19

What is a C string? – essentially a hack

• A NUL (zero) (note: not NULL) terminated array

• H e l l o \0
• Note this is really:

0x48 0x65 0x6c 0x6c 0x6f 0x00

• Note in C, arrays are essentially just pointers

• Can statically declare: (compiler puts the 0 on end for

you)

char s t r i n g 1 [6]=” He l l o ” ;

cha r s t r i n g 1 []=” He l l o ” ; // a u t o s i z e

20

char ∗ s t r i n g 2=”He l l o ” ;

21

C String Review

• Many issues with array of bytes vs string, especially

in other languages. Complicated if Unicode or UTF8.

Windows / java and wchar (16-bit chars)

• You can use either pointer or array access to get a value

(string[0] is the same as *string)

• Note that double quotes indicate a string, while single

quotes indicate a single character

22

Upsides of C strings

• Fast and simple to deal with in assembly language

• Can quickly make short and cryptic functions to

manipulate them

• ???

23

Downsides of C strings

• No way to tell the maximum size from the pointer

• Can only find out current size of string by iterating to

find end

• The C library has a lot of helper functions, many of

which are flawed in deep ways

24

Other String Implementations

• Pascal-style strings, first byte is the length

◦ Always know length, no need to strlen()

◦ Maximum size (if 8-bit than max 256 chars)

• Higher level / object oriented languages (python, C++?)

still have some sort of array of chars inside, but wrap it

with extra info to provide safer access to things

25

C string pitfalls – Writing off the End

• What happens when web form on your device’s web

interface asking “name” and you allocate 64 bytes but

don’t check, and someone types 4096 bytes

• What’s the worst case?

• Crash your program?

• Corrupt data?

• Complete system compromise?

26

Can the C-library string functions save you?

• The standard strcpy(char *dst, char *src)

◦ will happily go off the end if destination smaller than

source

• strncpy(char *dst, char *src, int size)

◦ added destination-size parameter, also pads dest with

0

◦ NOTE: will leave off (!) the NUL terminator if not fit

• strlcpy(char *dst, char *src, int size)

◦ always terminates destination

27

◦ if destination full, you lose a byte as it is silently

truncated and last byte made NUL

◦ No error is indicated if this happens

◦ why a problem? example: say want to remove

file.txt˜but got got truncated to file.txt instead?

◦ https://lwn.net/Articles/507319/

• Kernel has strscpy(char *dst, char *src, int size)

◦ always returns valid string

◦ returns a negative ERRNO on failure

28

https://lwn.net/Articles/507319/

HW#8 Challenge – Reading from File

29

Method One – File I/O Using fscanf()

• The “stream” file interface in C lets you used buffered

I/O and is slightly higher level than open()/close()

• Open a file with: FILE *fff;

fff=fopen("filename","r");

Check for errors! fff==NULL if it fails to open

• close a file with fclose(fff);

• you can read a string using fscanf(fff,"%s",string);

30

notes on scanf() functions

• printf() like interface

char s t r i n g [2 5 6] ;

i n t x ;

s c a n f (”%d %s ”,&x , s t r i n g) ;

◦ Types to read like in printf, d for integer, s for string

◦ Useful trick, %*s the asterisk means read but don’t

output, useful for skipping things

◦ Result goes to a pointer. Note a string is already a

pointer so no need for an ampersand

31

• scanf() reads from standard input (keyboard)

• fscanf() reads from file

• sscanf() reads from a string

32

Method Two – Read Entire File into RAM

• There are multiple ways to read files into a string in C

Assume char string[1024];

◦ fd=open("filename",RD ONLY);

result=read(fd,string,1023); close(fd);

◦ FILE *fff; fff=fopen("filename","r");

fread(buffer,size,count,fff); fclose(fff)

• If you are treating things as a string, be sure to NUL-

terminate string[result]=0;

33

Hardcoded sizes

• In the last example I was being lazy and hardcoded a 1k

size instead

Can you make that dynamic?

• Use stat() to get filesize, then use malloc() to allocate

space? Be sure to free() when done

34

Other ways to access file contents

• Advanced: use mmap()

• You can also use fgets(buffer,size,fff); to bring

in one line at a time

• What about gets()? Dropped from C libraries as being

too unsafe! No size so just writes forever

35

Finding a location / substring in a larger
string

• If you trust the Linux kernel developers to keep a “stable

ABI” you can assume the temperature will always be

a fixed offset and hard code it. This can be a bit

dangerous.

• You can use the scanf() series of functions to parse the

string (either fscanf() directly, or sscanf() on the string)

One helpful hint, putting a ‘*’ in a conversion (like %*s

tells scanf to read in the value but ignore it.

36

• You can use the strstr() search for substring

C-library function to search for substrings, i.e.

strstr(string,"NO"); (haystack, needle)

• Maybe in conjunction with strtok()?

• You can manually parse the array.

Using array syntax, something like:

i=0; while(string[i]!=0) {
if (string[i]==’t’) break; i++ }
Using pointer syntax, something like:

char *a; a=string; while(*a!=0) {
if (*a==’t’) break; a++; }

37

Pointing into a string

• If you searched for ”t=” you might now have a pointer

a to something like ”t=12345”. To point to 12345 you

can just add 2 to the string pointer.

• printf("%s\n",string+2);
• printf("%s\n",&string[2]);

38

Converting string to decimal or floating
point

• atoi(char *string) converts string to integer. What

happens on error?

• strtol() will give you an error but is more complex to

use

• atof() and strtod() will do floating point

39

Comparing strings

• Can you just use ==? NO!

• Be careful using strcmp() (or even better, strncmp()

they have unusual return value

less than, 0 or greater than depending. 0 means match

So you want something like

if (!strcmp(a,b)) do something();

40

