
ECE 471 – Embedded Systems
Lecture 26

Vince Weaver

https://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 November 2024

https://www.eece.maine.edu/~vweaver


Announcements

• HW#8 is due

• Project topics are due

• Midterm #2 on Wednesday November 20th

• HW#9 will be posted, you can have two weeks as it’s a

bit harder

• No Class Monday

1



HW#9 – Summary

• Use a temperature probe (either SPI or 1-wire) and

output the result to the i2c display

◦ Re-use i2c display code from earlier homework

◦ Re-use temp code (either TMP36 or the 1-wire)

◦ Display the temperature on display

• When done can turn back in parts (assuming you aren’t

using them for the project)

2



HW#9 Notes – Modular Code

• In previous homeworks we put everything in one C file

• This isn’t really practical for large projects

• By splitting things up into smaller files you can have

some benefits:

◦ Easier to organize/find code

◦ Can re-use code easier

◦ Less chance of merge conflicts when multiple people

working on project in git

◦ Can take common code and make libraries

3



HW#9 – Writing Modular Code

• In C you can compile each C file into its own object file,

link together at end

• API defined in a header .h file

• For example in the homework, we could put

temperature read code into its own file with a double

get temperature(void) interface

• For other C files to see this, you need to export the

definition. Usually this is done by putting the advance

definition double get temperature(void); in a .h

4



header file and then including it in the other files

• Note: don’t put full C functions in header files. I know

this is a C++ thing but it’s usually frowned upon when

programming in C

• Each file does not need a main() function, you only

need one per combined program.

5



HW#9 – Building Modular Code

• To link the various .o files together involves the “linker”.

However it’s easier to just let gcc do it (gcc knows

how to run the linker for you) gcc -o display temp

display.o temperature.o

• The linker merges the .o files into one big executable,

and makes sure the placeholders to functions/variables

in all of the files get the right addresses/pointers to

where things live in the finished executable.

• How do you make sure when you change one C file that

6



everything that uses it is also rebuilt? A well-crafted

Makefile will have all these dependencies in place and

will rebuild everything properly.

• What if you want to make an official library? Static

libraries are .a, dynamic .so. It’s fairly easy to do this,

just a few extra command line tools like ar or maybe

even just using -shared to gcc

7



HW#9 – Converting Floating Point to
Digits

• Use sprintf()
char string [128];

double temperature;

sprintf(string ,"%.1lf",temperature );

/* Now string [0] has first digit , string [1] second , etc */

• Use division/modulus
double temperature =23.4;

int hundreds ,tens , ones ,remainder;

hundreds=temperature /100;

remainder=temperature %100;

tens=remainder /10;

ones=remainder %10;

8



HW#9 – Writing Good Testcases

• Once you have written your nice modular code, how can

you test it?

• Need to write some test cases that test a wide range of

behaviors

• In the homework I have you think up some test cases

9



Computer Security
and why it matters for embedded systems

• Most effective security is being unconnected from the

world and locked away in a box. Until recently most

embedded systems matched that.

• Modern embedded systems are increasingly connected

to networks, etc. Embedded code is not necessarily

prepared for this.

• Internet of Things: IoT (the S is for Security)

10



Computer Security – The Problem

• Untrusted inputs from user can be hostile.

• Users with physical access can bypass most software

security.

11



What can an attacker gain?

• Fun / Mischief

• Profit

• A network of servers that can be used for illicit purposes

(SPAM, Warez, DDOS, bitcoin mining)

• Spying on others (companies, governments, etc)

12



Sources of Attack

• Untrusted user input

Web page forms

Keyboard Input

• USB Keys (CD-ROMs)

Autorun/Autostart on Windows

Scatter usb keys around parking lot, helpful people plug

into machine.

• Network

13



cellphone modems

ethernet/internet

wireless/bluetooth

• Backdoors

Debugging or Malicious, left in place

• Brute Force – trying all possible usernames/passwords

14



Types of Security Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

• Rootkit

• Re-write firmware? VM? Above OS?

15



Unsanitized Inputs

• Using values from users directly can be a problem if

passed directly to another process

• If data (say from a web-form) directly passed to a UNIX

shell script, then by including characters like ; can issue

arbitrary commands: system("rm %s\n",userdata);

• SQL injection attacks; escape characters can turn

a command into two, letting user execute arbitrary

SQL commands; xkcd Robert ’); DROP TABLE

Students;--

16



https://xkcd.com/327/

17

https://xkcd.com/327/


Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

18



Buffer Overflow Example
void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

19



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

20



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Scanning for unusual characters (can you write all-ASCII

shellcode?)

• Running in a “sandbox”

21



Coding Mistakes with Security Implications

22



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

23



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

before dropping privilege you can also have a root exploit.

24



◦ ping (requires root to open raw socket)

◦ X11 (needs root to access graphics cards)

◦ web-server (needs root to open port 80).

25



Types of Security Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

• Rootkit

• Re-write firmware? VM? Above OS?

26



Information Leakage / Side Channel
Attacks

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• If code takes different paths through code can notice

this via linked info

Solution: cycle-invariant code, takes same amount of

time for all paths through code (really hard to write

27



code like this)

• Recent CPU architecture extensions to help with this

(ARM64 DIT data independent timing)

28



Information Leakage: Meltdown and
Spectre

• Can use timing to find if address is in cache

• If speculative execution, can do things like

if (secret&1) a[0]=1;

else a[4096]=1;

then use timing to see which one was brought in

29



Deceptive Code

• Can you sneak purposefully buggy/exploitable code into

open source?

• Can you sneak bad code (or use typo-squatting) to trick

people in large public repositories (like javascript/npm)

• To-do at U of Minnesota where researches tried

(unsuccessfully it turns out) to sneak questionable code

into the kernel

• “Trojan Source” in the news: can use unicode (including

30



left-right reversal) to have code that looks correct but

compiler will compile differently x!=y vs y=!x

• Should code allow non-ASCII?

31


