ECE 471 – Embedded Systems Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2025

Announcements

- HW#1 was posted, due Friday
 it's relatively easy, short answer, be sure to follow
 directions and submit via e-mail
- If you have questions on the homework, you can get a faster response if you indicate it's a question in the e-mail subject

Tradeoffs

It's all about tradeoffs

- Power / Thermal
- Performance
- Availability (!!!)
- Cost
- Compatibility
- Time to Market
- Features
- Size / Footprint

Challenges vs Regular Systems

- Programming in constrained environment (cross-compiling / emulators)
- Security
- Safety
- Real-time
- Power consumption
- Long-life (embedded device might be in use for decades)
- Testing
- Bug-fixing

Discussion

- What concerns might you have when designing an embedded system?
 - Security is a big one these days
- What language might you write your code in?
 C is still popular despite security issues.

The ARM Architecture

- What does ARM stand for?
 (these days it's not an acronym anymore)
- Will ARM be around forever?
 Even the most prominent companies can collapse suddenly. Intel is currently being a cautionary example.

Ancient ARM History

- Acorn Computer, 1980s in UK
- Computers like Electron, Archimedes, BBC Micro
- BBC Micro used 6502
 - 6502 also used in Commodore 64, Apple II, NES, Atari
 2600
 - Fun fact: 6502 design led by UMaine alum Chuck
 Peddle

ARM: End of 8-bit era

- Acorn wanted new chip for newer machines
- MOS Technology had 16-bit 65816 (used by Apple IIgs, SNES) but it had some downsides
- Acorn first visited Natl Semiconductor who had hundreds of engineers/expensive equipment making chips
- They later visited MOS (6502) and found was only developed by a few people by hand. how hard could it be...
- Decided to make one themselves.

ARM: Original Design

- Furber and Wilson made ARMv1
- 27k transistors, 3um
- Low power, aiming for 1W so could use cheaper plastic vs ceramic case
- Actually was 0.1W

ARM: Medium History

- Acorn RISC Machine.
- 1990 ARM founded by Acorn, Apple, VLSI Technologies, changed to Advanced RISC Machines (at request of Apple?)
- 1998 at IPO changed to just "ARM Holdings"

Recent ARM History

- Bought by Softbank (Japan) in 2016
- Name changed to "Arm" in 2017
- Softbank was in talks to sell ARM to NVIDIA (2020) but that fell through
- China subsidiary went rogue
- Had another IPO in 2023

ARM Business Plan

- IP Licensing company. Does not fab own chips. License to other companies
- Other companies take the design, put on SoC, attach whatever other logic blocks are needed
- Relatively small company compared to Intel which not only deigns the chip, but fabs, etc.
- Can buy full core (Cortex-AX) or just rights to ISA and make your own (Apple A14 / M1)

AMBA Bus Protocol for SoC

Advanced Microcontroller Bus Architecture

- Common bus, various companies can provide logic blocks for it, can swap in and out ARM cores as needed.
- ARM System Bus (ASB), ARM Peripheral Bus (APB)
- ARM High Performance Bus (AHB)
- You might recognize those prefixes from register names in ECE271

RISC / CISC Discussion

- Simple decode. Load/store. Fixed instruction width.
 3-operand.
- MIPS is classic RISC
- x86 is classic CISC (with complex instructions)
 Though internally x86 executes uops, RISC
- ARM (predication, auto-increment, barrel shifter)
 Called RISC but has complex instructions

RISC / CISC Example

Memory copy: Load a byte from pointer, store byte to another pointer, increment pointers, loop until counter counted down.

CISC	RISC
rep movsb	ldb r0,[r1]
	add r1,r1,#1
	stb r0,[r2]
	add r2,r2,#1
	sub r3,r3,#1
	cmp r3,#0
	bne loop

Note: if ARM32 can optimize a bit

ARM Architecture vs Family (old)

- ARMv1 : ARM1
- ARMv2: ARM2, ARM3 (26-bit, status in PC register)
- ARMv3: ARM6, ARM7
- ARMv4: StrongARM, ARM7TDMI, ARM9TDMI
- ARMv5: ARM7EJ, ARM9E, ARM10E, XScale

ARM Architecture vs Family (newer)

- ARMv6: ARM11 (Raspberry Pi A/B), ARM Cortex-M0
- ARMv7: Cortex A8, A9, A15, A7 (Pi2), Cortex-M3
- ARMv8: (64-bit) Cortex A50, A53 (Pi3), A57, A72
 (Pi4)
 - ARMv8.2 A76 (Pi5)
 - ARMv8.1, 8.2, 8.3, 8.4, 8.5
 - ARMv8-A, ARMv8-R
- ARMv9 : Cortex-X2, Cortex-X3, Cortex-A710/A510 (big/little)

Various abbreviations in Model Names

- Modern Cortex Processors
 - "Application" ARM Cortex-A
 - "Real-time" ARM Cortex-R
 - "Micro-controller" ARM Cortex-M
- ARM7 Processors (example armv4 ARM7TDMI)
 - "E" means DSP instructions
 - "M" improved multiplier
 - "T" THUMB
 - "J" Jazelle (java bytecodes)

- o "D" Debug
- "I" ICE (In-circuit Emulator)
- o "EE" ThumbExecutionEnvironment, Just-in-time
- NEON SIMD
- ARM11 Processors (Raspberry Pi is armv6 BCM2835 ARM1176JZF-S)
 - (All have Thumb)
 - ∘ S − Synthesizable
 - J − Java Extension
 - ∘ Z − TrustZone
 - F Vector Floating Point Coprocessor

Single Board Computers

- Small boards with lots of I/O, often for use in embedded systems
- Often put out by companies trying to encourage use of their chips
- Examples
 - TS-7600 (ECE has a zillion of these)
 - Pandaboard / Beagleboard / Beaglebone
 - Gumstix (used in 471 years ago)
 - Raspberry Pi

- Pi clones (Orange, Banana, etc)
- Arduino, Pi-pico, esp32
- STM boards (like used in ECE271)
- MOS KIM-1 (1976)

Example: STM NUCLEO-L476RG

- Used in ECE 271
- 32-bit Cortex-M4, 80MHz, FPU
- Thumb2 ISA
- Low-power (30nA shutdown, 120nA standby)
- Peripherals
 - o ADC, RTC
 - Timers
 - 1MB Flash, 128k SRAM
 - USB/i2c/USART/Canbus

We'll Use Raspberry Pis in ECE471

- High perf
- Relatively low cost
- Well maintained Linux port
- Relatively well documented
- Widely used so support easy to find online

Raspberry Pi

Note there are two separate (but related) organizations:

- Raspberry Pi Foundation charitable group to encourage computer science education
- Raspberry Pi, Ltd company that makes and sells Raspberry Pi Boards
- Their goals don't always line up
- During parts shortage extremely limited board availability, Ltd was prioritizing businesses over education institutions

What is a Raspberry Pi?

- Raspberry Pi Foundation wanted small board to encourage CS in schools
- Easy to use and cheap enough that students can experiment without worrying too much about bricking it
- Back in the day small micro-computers encouraged hacking, modern Windows systems not so much
- There are other small embedded boards (BeagleBone, etc.) but Pi is a nice combination of performance, cost, and available software

