
ECE 471 – Embedded Systems
Lecture 4

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Any questions on HW#1?

• HW#2 will be posted Friday

• Let me know if you don’t have a Raspberry Pi yet

1

Raspberry Pi

Note there are two separate (but related) organizations:

• Raspberry Pi Foundation – charitable group to encourage

computer science education

• Raspberry Pi, Ltd – company that makes and sells

Raspberry Pi Boards

• Their goals don’t always line up

• During parts shortage extremely limited board

availability, Ltd was prioritizing businesses over education

institutions

2

What is a Raspberry Pi?

• Raspberry Pi Foundation wanted small board to

encourage CS in schools

• Easy to use and cheap enough that students can

experiment without worrying too much about bricking it

• Back in the day small micro-computers encouraged

hacking, modern Windows systems not so much

3

Why use a Raspberry Pi?

• There are other small embedded boards (Beaglebone,

etc.) but Pi has many nice features

◦ high performance (especially pi4/pi5)

◦ low cost (relatively, with less RAM)

◦ using Linux so no software-lock-in (STM hal?)

◦ relatively well documented (but still not great)

◦ available software/support (this is big!)

Other ARM boards give kernel blob with no support

and quickly gets out of date / no commits upstream

4

Raspberry Pi Models

• Model Names originally from BBC Micro

• Up through pi4 all have more or less same SoC.

VideoCore IV GPU runs show (VI pi4, VII pi5)

• First released in 2012

• They like to release new models just after I’ve bought

the older models for my cluster

5

BCM2835/BCM2708 – ARM1176
(ARMv6)

• Single core, slow ethernet

• Model 1B – 700MHz, 512MB RAM, SD, USB

hub+USB Ethernet

• Model 1B+ – like B but micro-SD, composite video-out

inside of audio jack, 4 USB ports, longer GPIO header,

re-arranged outputs, more mounting holes, fewer LEDs,

lower power

• Model 1A / Model 1A+ – less RAM

6

(256MB/512MB), no Ethernet, no USB hub, cheaper,

less power

• Zero – 1GHz, 512MB, smaller, cheaper, $5
• Zero W – 1GHz, has wireless, $10
• Compute Node – like B but on SO-DIMM backplane,

eMMC

7

BCM2836/BCM2709 – ARM Cortex A7
(ARMv7)

• Model 2B (original) – like 1B+ but with 1GB RAM,

900MHz Quad-core Cortex A7

8

BCM2837/BCM2710 – ARM Cortex A53
(ARMv8)

• Model 3B – 4-core 64-bit, 1.2GHz, wireless Ethernet,

bluetooth (crash on OpenBLAS Linpack)

• Model 2B (v1.2) – update with Cortex A53

• Model 3B+ – better thermal, faster Ethernet (1GB but

maxes at 300MB), power over Ethernet header. Still

only 1GB RAM

• Model3 A+, Compute 3

9

BCM2711 – ARM Cortex A72 (ARMv8)

• Model 4B

• 1.5GHz, Videocore VI at 500MHz

• USB-C power connector

• 1, 2, 4 or 8GB RAM

• USB3, microHDMI*2

• PCIe if you de-solder USB chip

• Real gigabit Ethernet

• GPIO header has more i2c/spi etc options

• pi400: built into keyboard (4GB 1.8GHz)

10

BCM2712 – ARM Cortex A76 (ARMv8.2)

• Model 5: 2GB / 4GB / 8GB / 16GB(?) RAM

• Power button!

• Videocore VII

• USB-C power (wants 5V at 5A if possible)

• Official PCIe support

• Drop headphone jack (composite video via header)

• Move peripherals to separate chip built with older process

• Real time clock (no battery by default)

• PIO (programmable I/O), on-board Cortex M3?

11

• pi500 built into keyboard, 8GB

12

Pi Pico - RP2040

• Pi Pico

◦ Can’t run Linux

◦ Completely new design, custom SoC

◦ 133MHz Dual core ARM-cortex M0+

◦ 264k SRAM / 2MB Flash / $4
• Pi Pico2

◦ ARM Cortex M33 and RISC-V processors

◦ 520k RAM, optional wifi/bluetooth

13

Software/Programming the Pi

• Many, many options

• Can even write your own on bare metal (see ECE531)

• We’ll use C on Linux

14

Why Linux?

• Open source

• Free (no cost, but also freedom)

• Widely used for ARM-based embedded systems

• I like Linux.

15

Brief Linux History

• UNIX: OS by bell labs from 1970s

Spread widely because AT&T couldn’t due to antitrust

• BSD (Berkeley) version made in California

• Linus Torvalds (from Finland) gets a 386

• No free UNIX? FreeBSD caught up in AT&T lawsuit

• Linus announces his custom OS in 1991

• Open-source development by many all over the world

• Don’t be afraid of Linus (or open-source projects in

general)

16

The media over-hypes how angry some developers get.

17

Why C?

• System Programming Language (OS/embedded)

• Portability (sort of) (i.e. how big is an int)

• Higher than assembly (barely)

Pearce: “all the power of assembly with all the ease-of-

use of assembly”

18

Why C over Java or C++?

• They can hide what is actually going on.

• C statements map more or less directly to assembly.

• With things like operator overload, templates,

exceptions, garbage collection, extra layers are added.

• This can matter for both size, speed, determinism, and

real time.

• On embedded might be restricted to a C++ subset

19

Why C over Python?

• Python is interpreted

• Mostly speed. (although you can JIT)

• Also if accessing low level hardware, in general you are

calling libraries from python that are written in C anyway.

20

Why C over Rust? (or Go or Zig)

• Don’t overlook momentum of an old platform, sample

code, libraries, etc.

• Rust still a moving target, needs to settle down a bit

• Maybe in the future

21

Downsides of C? – Undefined Behavior

• Compiler is allowed to do anything it wants (including

dropping code) if it encounters something undefined by

the standard.

• This can be something as simple as just overflowing a

signed integer or shifting by more than 32.

• People joke of “nasal demons” i.e. standard says

anything can happen here, even demons flying out of

your nose

22

Downsides of C? – Too Much Trust

• “Enough rope to shoot yourself in the foot”.

• C gives a lot of power, especially with pointers.

• It assumes you know what you are doing though.

• With great power comes great responsibility.

23

Downsides of C – Security

• Biggest issue is memory handling (lack thereof)

• Buffer overflows

i n t a [5] ;

a [0]=1 ; // f i n e

a [10000000]=1; // o b v i o u s l y bad

a [5]=1 ; // s u b t l y bad

• How can that go wrong? Crash? Corrupt Memory?

Wrong results? Total system compromise?

• Overwriting stack can be bad, as return address there

24

• Especially if user input going into the variable

25

Downsides of C – Security

• Why can’t the compiler stop you? Maybe it can in above

example.

• What if the offset read from user input instead?

s c an f (”%d”,& i) ;

a [i]=1;

• Could still maybe detect this, but would need to add

extra code which might be slow?

• Problem is arrays and pointers are same in C

26

Downsides of C – Pointers

• Wouldn’t we be better off w/o pointers?

• Philosophy of safer languages (can even be faster! Can

avoid aliasing pessimizations!)

• The actual processor does pointers a lot though

• We are close to hardware

• In embedded we might need to poke to exact memory

accesses (MMIO and such)

27

Program in C (song/video)

• https://www.youtube.com/watch?v=tas0O586t80

28

https://www.youtube.com/watch?v=tas0O586t80

