
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#1 grades out soon

• Don’t forget HW#2 is due Friday

1

HW#1 – Characteristics of Embedded
System

• embedded inside – (sometimes hard to know) Is a raw

pi one? Pi used as desktop? Pi used as retro-pi? Pi

controlling a 3D printer?

• resource constrained

• dedicated purpose

• lots of I/O

• real-time constraints (careful with this one)

2

HW#1 – Other characteristics

• Microcontroller?

sort of implies resource constrained

• Low-cost?

This is complicated. Something like a desktop might

be optimized for cost, while a one-off embedded system

might not, and in fact might be over-engineered (like a

space probe) because has to operate in tough conditions.

• Low-power?

again, this can be part of resource constrained but be

3

sure to explain

• Operating system?

Can have an OS and still be considered embedded.

• Real-Time Confusion: we will discuss this more in future,

for example Turning off the motor, and it takes an extra

1/2s is not really considered a real time thing. No

one dies, no hardware destroyed, just mild annoyance

if noticed at all. Now if somehow it had to keep the

waveform to H-bridge exact within 1ms or the motor

would overheat and catch on fire, that could be a real-

time issue.

4

HW#1 – Identifying an Embedded System

• Be decisive with your answer, and be specific with your

reasoning

• iPhone (Apple always announces the new one each year

the week of this assignment)

real time doesn’t necessarily mean quick-response, or

FLOPS

updatable not a characteristic

• Toothbrush is actual specs I came across Note low-price

is not a characteristic, often opposite might be true

5

• Microwave: having a clock doesn’t make it real time.

6

HW#1 – Bits

• ARM1176 is generally considered 32-bits

• ARMv8 is generally considered 64-bits

• 6502 generally considered 8 bits

• There are people who will have long drawn-out internet

arguments about the bitness of old systems

7

HW#1 – ASIC vs ucontroller

• cost/power. Depends a lot on numbers made, process,

and how well designed it is.

• Could be lower-cost/faster speed, but not necessarily.

Why bother then? Cost?

• Extra hardware overhead? ASIC mostly just flip flops

and gates. SoC internally a lot more, but these days not

much else is needed.

• More secure? Can you reverse engineer an ASIC?

8

C Review

In past years sometimes the reason a HW assignment

didn’t work was due to using C poorly rather than

misunderstandings of the desired algorithm.

9

Loops in C

• int i; (why int? is int signed? inside of loop def?)

• for(i=0;i<10;i++) {...}
0, 1, 2, ... 9

• i=0; while(i<10) { ...; i++; }

• i=0; do { ...; i++; } while(i<10);

Always runs at least once

10

printf() in C

• Lots of options, see man page

• How print an integer? printf("%d",i);

• Character? String? floating point? Hex?

printf("%c %s %f %x",c,s,f,x);

• More advanced formatting stuff

printf("%0.3f",f);

• Escape characters like percent, newlines and quotes

printf("\t \n \" \%");

11

Common C Pitfalls – Static Memory

• Allocating things like arrays (int a[5])

• C doesn’t prevent you from accessing past the end

• What happens if you do go outside the boundary?

◦ Crash? Memory corruption?

◦ Nothing? (you are lucky and it hits something

unimportant. Is that best or worst case?)

12

Common C Pitfalls – Dynamic Memory

• Often avoided on embedded systems

• Dynamically allocate memory with malloc() and

calloc()

• char *ptr=malloc(128);

• Should check returned value against NULL.

What happens if you de-reference a NULL pointer?

• Out of bounds memory access same issue as with static

ptr[200]=0;

13

Common C Pitfalls – Freeing Memory

• Memory allocated with malloc/calloc needs to be freed

with free()

• What happens if you forget to free memory?

Memory Leak

• Might not be an issue if you allocate something once

and use it all program. More of a problem if you’re

constantly allocating/freeing and miss freeing.

• What happens if you free the same memory twice?

Crash and/or security issue

14

More on Memory Leaks

• Note not all memory leaks are critical

• If you allocate it once and use if for the whole program

what happens?

• If you have an operating system then generally it will

free all allocated memory when the program exits

• It can still be considered polite to free() things anyway

15

Debugging Memory Access issues

• The Valgrind utility can help debug these errors

Mostly dynamic, not much can be done about static

• It translates your program on the fly, instruments all

memory allocations, and monitors all loads/stores to see

if they are in bounds

• Valgrind can also help find memory leaks

• Downside: really slow

16

Continuation of C Limitations from last
week

17

Why C?

• System Programming Language (OS/embedded)

• Portability (sort of) (i.e. how big is an int)

• Higher than assembly (barely)

Pearce: “all the power of assembly with all the ease-of-

use of assembly”

18

Why C over Java or C++?

• They can hide what is actually going on.

• C statements map more or less directly to assembly.

• With things like operator overload, templates,

exceptions, garbage collection, extra layers are added.

• This can matter for both size, speed, determinism, and

real time.

• On embedded might be restricted to a C++ subset

19

Why C over Python?

• Python is interpreted

• Mostly speed. (although you can JIT)

• Also if accessing low level hardware, in general you are

calling libraries from python that are written in C anyway.

20

Why C over Rust? (or Go or Zig)

• Don’t overlook momentum of an old platform, sample

code, libraries, etc.

• Rust still a moving target, needs to settle down a bit

• Maybe in the future

21

Downsides of C? – Undefined Behavior

• Compiler is allowed to do anything it wants (including

dropping code) if it encounters something undefined by

the standard.

• This can be something as simple as just overflowing a

signed integer or shifting by more than 32.

• People joke of “nasal demons” i.e. standard says

anything can happen here, even demons flying out of

your nose

22

Downsides of C? – Too Much Trust

• “Enough rope to shoot yourself in the foot”.

• C gives a lot of power, especially with pointers.

• It assumes you know what you are doing though.

• With great power comes great responsibility.

23

Downsides of C – Security

• Biggest issue is memory handling (lack thereof)

• Buffer overflows

i n t a [5] ;

a [0]=1 ; // f i n e

a [10000000]=1; // o b v i o u s l y bad

a [5]=1 ; // s u b t l y bad

• How can that go wrong? Crash? Corrupt Memory?

Wrong results? Total system compromise?

• Overwriting stack can be bad, as return address there

24

• Especially if user input going into the variable

25

Downsides of C – Security

• Why can’t the compiler stop you? Maybe it can in above

example.

• What if the offset read from user input instead?

s c an f (”%d”,& i) ;

a [i]=1;

• Could still maybe detect this, but would need to add

extra code which might be slow?

• Problem is arrays and pointers are same in C

26

Downsides of C – Pointers

• Wouldn’t we be better off w/o pointers?

• Philosophy of safer languages (can even be faster! Can

avoid aliasing pessimizations!)

• The actual processor does pointers a lot though

• We are close to hardware

• In embedded we might need to poke to exact memory

accesses (MMIO and such)

27

Program in C (song/video)

• https://www.youtube.com/watch?v=tas0O586t80

28

https://www.youtube.com/watch?v=tas0O586t80

C Pitfalls – Strings

• C strings are just zero-terminated character arrays

cha r s []=” He l l o ” ;

H e l l o \0
• You can end up with all the same problems with memory

accesses, especially running off the end

• Sometimes this is called NUL terminated, note that NUL

means 0 here and is unrelated to NULL pointers

29

C Pitfalls – C String Library

• There are versions of the string routines that take a

length (strncpy() or strlcpy() instead of strcpy()

but beware those have their own issues

vo i d s t r c p y (cha r ∗ dest , ∗ s r c) {
wh i l e (∗ s r c !=0) {

∗ de s t=∗ s r c ;

∗ de s t++; ∗ s r c++;

}
}

30

C Pitfalls – Braces

• Missing braces

i f (a==0)

b=2;

i f (a==0)

b=2;

c=3;

31

C Pitfalls – equality check

• = vs ==

i f (a=0) do some th i ng impo r t an t () ;

• Never ignore warnings from the compiler!

• Some people will use if (0=a) to force an error

32

C Pitfalls – Type Issues / Casting

• int x; float f; x=f;

• C will happily auto-convert types for you

• Also be careful of signed/unsigned issues

• You might get warnings that go away if you cast things

like x=(int)f;

Be sure you know what you are doing here as it can go

terribly wrong.

33

C Pitfalls – Setting Constants

• Floating point constants can be tricky, setting double

x=9/5; will get you 1, you want 9.5/5.0

• Leading zeros specify Octal (base-8) numbers so

something like int x=010; might give surprising results.

34

Debugging – when things go wrong

• Use a debugger like gdb

◦ Compile your code with -g for debug symbols

◦ Run gdb ./hello

◦ bt backtrace, info regis gives register, disassem

disassembles, etc.

• Sprinkle printf calls

35

