
ECE 471 – Embedded Systems
Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted

• If you weren’t here Friday and need the connector wires,

be sure to grab some

• Also if you need any parts (LED, breadboard) let me

know

1

Q from last time – Initializing a Struct to 0

• Using memset() definitely safe

• Using ={0} will work but is a bit of a hack

(and I worry a bit about padding, which can be an issue

when talking to the kernel like we are here)

also possibly breaks with unions in C23

• Using ={} which is a brand new C23 way of doing it.

2

(Review) How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

3

Tools – Compiler

• takes code, usually (but not always) generates assembly

• Compiler can have front-end which generates

intermediate language, which is then optimized, and

back-end generates assembly

• Can be quite complex

• Examples: gcc, clang

• What language is a compiler written in? Who wrote the

first one?

4

Tools – Assembler

• Takes assembly language and generates machine

language

• creates object files

• Relatively easy to write

• Examples: GNU Assembler (gas), tasm, nasm, masm,

etc.

5

Tools – Linker

• Creates executable files from object files

• resolves addresses of symbols.

• Links to symbols in libraries.

• Examples: ld, gold

6

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

Data

Processing

Immediate value (if immediate)

ADD opcode

Immediate

8

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

9

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

10

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

11

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

12

Where do Programs Get Loaded?

• When you run your programs, where do they get loaded

in memory?

• It’s more obvious in low-end embedded systems with

limited resources

• You (or your tools) specify exactly where in physical

memory things go and where they run

13

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

14

Where do Programs Get Loaded on Pi?

• You can also run a Pi bare-metal (see ECE531) but in

this class we are going to run on top of an Operating

System

• With an OS you might want to run more than one

application at a time

• What happens if they are compiled to run at the same

memory offset?

• You can use PIC (position independent code, which uses

relative addresses) but that can be a pain

15

• With an OS instead you can use virtual memory

16

Raspberry Pi (32bit) Physical Layout

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

17

Linux 32-bit Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

18

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() (brk() syscall) and

C++ new(). Grows up.

• Stack: LIFO memory structure. Grows down.

• mmap() / shared libraries also go in there

19

Other Linux memory Layout

• Kernel: is mapped into top of address space, for

performance reasons (but security...)

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

20

Brief overview of Virtual Memory

• Each program gets a flat 4GB (on 32-bit) view of memory

• CPU and Operating system work together to provide this

illusion

• Program sees 4GB even if it doesn’t have that much

RAM (can make “virtual” memory out of disk)

21

Physical vs Virtual Memory

• OS/CPU deal with “pages”, usually 4kB chunks of

memory.

• Every mem access has to be translated

• The operating system looks in “page table” to see which

physical address your virtual address maps to

• This is slow. How to improve slow memory in CPU?

Cache!

• TLB caches pagetable translations

• As long as you don’t run out of TLB entries this is fast.

22

Virtual / Physical Mapping

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

23

What if load/store address not in TLB?

• Walk the “page-tables” which are memory structures

that describe currently known pages belonging to a

process

• What if not in the page-tables? PAGE FAULT

◦ ask OS if the address is valid, if so update page tables

◦ If in text/data, load from disk

◦ If in bss/heap alloc page of 0s

◦ If near stack, autogrow it

◦ If not valid, segfault

24

Benefits of Virtual Memory

• Disk swapping/paging: can use disk as (slow) “virtual”

memory and move pages to and from disk into memory

to give the illusion you have more

• Demand paging: the OS doesn’t have to load pages

into memory until the first time you actually load/store

them.

• Context Switch: when you switch to a new program,

the TLB is flushed and a different page table is used to

provide the new program its own view of memory.

25

• Flat memory space, all processes can start at same

memory location without having to recompile

• Security: different processes can’t see others memory (or

over-write it)

26

