ECE 471 — Embedded Systems
Lecture 15

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 October 2025


https://web.eece.maine.edu/~vweaver

Announcements

e Next week Fall Break already

e Midterm on Friday 17th, more details as we get closer

e Don't forget HW#5 (get display if needed)

e Don't rush to hand back in the i2c displays, you'll need
them for HW#9

e Raspberry Pi prices going up, especially 4GB and 8GB
Upton claims due to HBM RAM from Al demand
affecting all DRAM prices

e Will post project document soon

-y 1



Last Note on HW#3 — Code Comments

e Was mostly looking that you had them at all

e A lot of people the comment was something like
“changed value” which is what you did, but that's not
what the code is actually doing and if you come back to
the code in 5 years not very helpful

e In theory it might almost be OK if it's in git and you

nave a better commit message about why it changed,

but It's best to have good comments too so you don't

nave to poke around commit messages

-y 2



Real Time Constraints

What are real time constraints?

e [ime deadlines that hardware needs to respond in.
e Goal not performance, but response time

e Deadlines are often (but not always) short (order of
milliseconds or microseconds)



Real Time Definition Confusion

e Real time can also mean other things with computers

e Real time, as in actual (not virtual) time of day. “Real
Time Clock” (RTC) or real value from time command

e Real time, as in happening live, like real-time rendering
in video games (as opposed to being recorded)

e In embedded systems it means something a bit different



Real-time example

e Self-driving car driving 65mph
o That's roughly 95 feet/s
o That's roughly 10 feet / 100ms
o Stopping distance is 180 feet
e Equipped with image processor: GPU and camera.
o Camera 60fps, 16ms.
o GPU code recognize a deer within 100m:s.

e Specification: if something jumps out, can stop within
200 feet.

-y 5




Can we meet that deadline?

e What if something goes wrong? Interrupt happens
taking 100ms? Garbage collection? What if we miss
deadline?

e Another example, turn in the road. How long does it
take to notice, make turn? What if there's a delay?

e What if wiggly road, and you consistently miss by 100ms?
Over-compensate?



Real Time Summary

e Real time is all about writing code to try to avoid missing
timing deadlines

e Also about analyzing what parts of code are timing
critical and which aren’t

e Writing perfect code to guarantee deadlines is extremely
difficult / expensive so it's generally only done when it's
absolutely necessary

e Tools don't make this easy. There's no way to specify
maximum time in a C function.

-y g



Types of Real Time Constraints

e Hard — miss deadline, total failure of system. Minor or
major disaster (people may die?)
Antilock brakes?

e Firm — result no longer useful after deadline missed
small number of misses might be acceptable
lost frames in video, missed frames in video game

e Soft — results still wanted but gradually less useful as
deadline passes.
Caps lock LED coming on?

-y 8



Note on Soft Realtime

e Some people worry, what if it is something like “press a
button, but takes minutes to run”

o If that's unacceptable, does that mean essentially all
things are hard-real time?

e Part of it comes down to how likely the failure is. If with
minimal programming effort the response is reasonable
99.9% of the time, and any consequence of missing is
minor, than soft real time

e If something consistently goes wrong and it takes minutes

9



for each button press and that's unacceptable, then yes,
maybe what you have is more than soft... but maybe
also you need to rethink your hardware/software design

-y 10



Uses of Real Time

Who uses realtime?

e Timing critical situations. Cars, medical equipment,
space probes, etc.

e Industrial automation. SCADA. Stuxnet.
e Musicians, important to have low-latency when recording

e High-speed trading

-y 11



Constraints depend on the Application

Try not to over-think things.

Can almost always come up with a scenario where a soft
constraint could become hard.

For example: Unlocking a car door taking an extra second?
Not hard real-time, except maybe if your car is about to
crash and you need to escape quickly.

/Y 12



Why isn’t everything Real-time?

e It's hard to do right
e It's expensive to do right
e It might take a lot of testing

e It's usually not necessary

13



Deviations from Real Time

Sometimes referred to as “Jitter”

e On an ideal system the same code would take the same,
oredictable amount of time to run each time

e In real life (and moreso on high-end systems) the
nardware and operating systems cannot do this

e Deviation (often some sort of random distribution) is
Iitter

-y 14



Hardware Sources of Jitter — Historical

e Typically Less jitter on older and simple hardware
e Old chips like 6502 — fixed clock, each instruction
takes an exact number of cycles. Deterministic. With

interrupts disabled you can perfectly predict how long
code will take.

Steve Wozniak famously wrote disk firmware on 6502

that more or less cycle-accurate bit-banged stepper
motors.

Also video games, racing the beam.

-y 15



Hardware Sources of Jitter — Modern

Modern hardware more complex.
Tradeoff: systems faster on average but with hard to
predict jitter

e Branch prediction / Speculative Execution

e Memory accesses unpredictable with caches — may take
2 cycles or 1000+ cycles (Memory Wall)

e Virtual Memory / Page faults

e Interrupts can take unknown amount of time

e Power-save may change clock frequency

-y 16



e Even in manuals instructions can take a range of cycles

e Slow/unpredictable hardware (hard disks, network
access)

e Memory refresh (LPDDR burst refresh can avoid this a
bit)

-y 17



Ways to Avoid Hardware Jitter

e Some newer embedded boards have simple helper
processors that can run more deterministically

e The big cores run an OS and the small ones programmed
separately

e Beaglebone — PRU (Programmable Real-Time Unit)

e Pi5, Pi Pico — PIO (Programmable |/0O)

-y 18



Software Sources of Jitter

e Interrupts. Taking too long to run; being disabled (cli)
e Operating system. Scheduler. Context-switching.
e Dynamic memory allocation, garbage collection.

-y 19



