ECE 471 — Embedded Systems
Lecture 16

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 October 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Don't forget HW#5

e Project document was posted to website

e Midterm on the 17th, will review briefly Friday and also
Wednesday

e Two weeks for HW#6 because of break and midterm

e For seniors in the class, advising for Spring 2026 coming
up soon.
Reminder that ECE574 Cluster Computing will not be
taught this year

-y 1

Brief Review of Jitter

Latency in Modern Systems

e Modern software stack has sources of latency

Video game keyboard latency example

See Dan Luu's Paper “Computer Latency: 1977-2017"
https://danluu.com/input-lag/

e 1977 computers can have less latency to getting keypress
on screen than fastest 2010s computers

e Having a fast processor only helps so much

e Slow hardware (keyboards, LCD displays), layers of
abstraction in the way

e Apple Il (1977) 30ms, modern machines 60-100+ms

https://danluu.com/input-lag/

Latency of Apple Ii

e CPU running code reading memory access
Each CPU instruction handful of 1IMHz cycles (few usec)

o Keypress happens, high bit set along with ASCII code,
CPU reads in

e CPU writes out ASCII value to memory

e Video generator hardware running in parallel at 60 fps

e Electron beam scanning, reads out RAM, runs through
decode ROM to get 7-bit pattern, writes to screen within
one frame worst case

-y 5

Latency of Modern System

e Press key, keyboard is own embedded system with CPU,
scans keyboard, gets value, encodes it up as USB packet

e Sends out over USB bus (complex and with latency)

e USB controller gets packet, sends interrupt to CPU

e CPU gets interrupt, takes packet, notes it, returns from
Interrupt

e Later bottom half runs, decodes, to input subsystem,

e Operating system sees if anything is waiting for the
input, if so it wakes it up (may take a bit if anything

-y 6

else running)
o If it's a GUI, might have to run and see which window
nas focus, etc
e Program itself finally gets notified of keypress. scanf().
mmediately printf()

e Terminal emulator, update the graphics for the window
(colors, font processing)

e GUI compositor puts together screen, tells OS

e OS sends out over PCle bus to GPU

e GPU runs shaders/whatever outputs to display via HDMI

e LCD display gets the data, decodes it to display it

-y ;

e Display might buffer a few frames to do extra processing
(turn this off with “gaming” mode)

Can you get Real-Time on Modern
Systems?

e Small embedded systems w/o operating system easier

e Some will have small PIO (programmable 1/0),
essentially smaller embedded system you can offload
important tasks to (Beaglebone, Pi Pico, Pi5)

e Code directly to hardware

e Turn off interrupts

e Turn off/avoid caches/speculation

e Load all of code into memory

-y 9

What about on higher end systems?

e Modern hardware does make it difficult with potentially
unpredictable delay

e Hard to program such machines w/o an operating system

e Some machines provide special, deterministic co-
processors to help (PRUs on the beaglebone)

e You can still attempt to get real-time by coding your OS
carefully

/Y 10

Real Time Operating Systems

How do RTOSes differ from regular OSes?

e Low-latency of OS calls and interrupts (reduced jitter)

e Fast/Advanced Context switching (especially the
scheduler used to pick which jobs to run)

e Often some sort of job priority mechanism that allows
high-importance tasks to run first

Software Worst Case — IRQ overhead

e OS like Linux will split interrupt handlers into
top/bottom halfs

e Top half will do the bare minimum: ACK the interrupt,
make a note for the OS to handle the rest later, then

immediately return. Tries to keep IRQ latency as small
as possible.

e Bottom half at some later time when nothing else is

going on the OS will carry out the work needed by the
IRQ (handle a keypress, or a network packet, etc)

/Y 12

Software Worst Case — Context Switching

e OS provides the illusion of single-user system despite
many processes running, by switching between them
quickly.

e Switch rate in general 100Hz to 1000Hz, but can vary
(and is configurable under Linux). Faster has high
overhead but better responsiveness (guis, etc). Slower
not good for interactive workloads but better for long-
running batch jobs.

-y 13

e You need to save register state. Can be slow, especially
with lots of registers.

e When does context switch happen? Periodic timer
interrupt. Certain syscalls (yield, sleep) when a process
gives up its timeslice. When waiting on /O

e \Who decided who gets to run next? The scheduler.
e [he scheduler is complex.

e Fair scheduling? If two users each have a process, who
runs when? |If one has 99 and one has 1, which runs

-y 14

next?

e Linux scheduler was O(N). Then O(1). Now O(log N).
Why not O(N*?)

-y 15

