
ECE 471 – Embedded Systems
Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 October 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Midterm on Friday, the 17th, in class

• Am trying to grade all homeworks by then

• HW#6 will be posted, have two weeks

• Hang on to displays, needed for HW#9

1



Midterm Notes

• The midterm will be in-person during class time

• Closed book/notes but you are allowed one page

(8.5”x11”) full of notes if you want

2



Midterm Content

• Be sure you know the characteristics of an embedded

system, and can make an argument about whether a

system is one or not.

◦ Inside of something (embedded)

◦ Fixed-purpose

◦ Resource constrained

◦ Sensor I/O

◦ Real time constraints (if you use this, be sure you can

explain)

3



• Benefits/downsides of using an operating system on an

embedded device

◦ Benefits: “Layer of Abstraction”

◦ Downsides: overhead, timing

• C code

◦ Have you look at some code and know what it is doing

◦ Fill in missing comments

◦ Look at code and find bugs

◦ Mostly know what file I/O, loops, usleep, open/ioctl

(things we’ve done in the homeworks)

• Code Density

4



◦ Why is dense code good in embedded systems?

◦ Know why ARM introduced THUMB/THUMB2

• GPIO & i2c

◦ Know some of its limitations (speeds, length of wires,

number of wires, etc)

◦ Don’t need to know the raw protocol

◦ Know the Linux interface (open, ioctl, write) and be

familiar with how those system calls work

• Realtime won’t be on this midterm

5



Project Preview

• Posted a PDF with full details to the website

• Can work in groups

• Embedded system (any type, not just Pi)

Pi Pico, Beagleboard, Orange Pi, 271 STM boards,

TS-7600, etc.

• Written in any language (asm, C, python, C++, Java,

Rust, etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

6



• I have a large amount of i2c, spi, and other devices that

you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Note: this will have to be distinct in some way from

senior project

• Will be a final writeup, and then a short minute

presentation and demo in front of the class during last

week of classes.

• Deadlines:

◦ November 7: pick topic (send e-mail with group

7



members and preliminary topic)

◦ November 24: progress report (e-mail with summary,

how it’s going, and which day you’d prefer to present)

◦ Last 4 days of classes: project presenations

◦ December 19: Writeup due

8



Operating System Scheduling

9



Real Time without an O/S

Often an event loop. All parts have to be written so

deadlines can be met. This means all tasks must carefully

be written to not take too long, this can be extra work if

one of the tasks is low-priority/not important
main() {

while (1) {

do_task1 (); // read sensor

do_task2 (); // react to sensor

do_task3 (); // update GUI (low priority)

}

}

10



Real Time with an O/S

What if instead you ran all three at once, and let OS

switch between them

while (1) { while (1) { while (1) {

do_task1 (); do_task_2 (); do_task3 ();

} } }

11



Bare Metal

• What if want priorities?

• Have GUI always run, have the other things happen in

timer interrupt handler?

• What if you have multiple hardware all trying to use

interrupts (network, serial port, etc)

• At some point it’s easier to let an OS handle the hard

stuff

12



Common OS scheduling strategies

• Event driven – have priorities, highest priority pre-empts

lower

Usually can “yield” rest of your timeslice

• Time sharing – only switch at regular clock time, round-

robin

13



Scheduler Types

• There is a large body of work on scheduling algorithms.

• Assume you tell it to run tasks, they are put into queue

• How should they be run? A few (not exhaustive)

possibilities:

◦ Simple: In order the jobs arrive

◦ Static: (RMS) Rate Monotonic Scheduling – shortest

first

◦ Dynamic: (EDF) Earliest deadline first

14



Deadline Scheduler Example

• Three tasks come in

◦ A: deadline: finish by 10s, takes 4s to run

◦ B: deadline: finish by 3s, takes 2s to run

◦ C: deadline: finish by 5s, takes 1s to run

• Can they meet the deadline?

In-order A A A A B B C - - -

RMS C B B A A A A - - -

EDF B B C A A A A - - -

15



Bonus Material – Real time on 8-bit
Gaming Platforms

16



Real Time on an Atari 2600

• Older 8-bit systems would have real time constraints

• Hardware needed to be updated, sometime to cycle-exact

(1us) deadlines or it wouldn’t work

◦ Atari 2600 video

◦ Apple II disk accesses

17



Atari 2600 Background

• Video game system from 1977

• 6507 processor 1.19MHz – 6502 but only 12 address pins

(8k address range)

• 128 bytes of RAM. Total. That includes stack

• Memory mapped I/O for audio/video

• No firmware, jumps directly to reset vector

18



Atari 2600 Graphics – CRT

Visible Picture

Overscan

Vertical Sync

Vertical Blank

H
o

ri
z
o

n
ta

l
B

la
n

k

3 scalines

37 scanlines

192 scanlines

30 scanlines

2
6
2
 s

c
a
n

li
n

e
s

66 GPU 160 GPU

76 CPU Cycles

• NTSC gives you 262 lines at 60Hz (PAL, in europe, more

lines 50Hz)

19



Atari 2600 Graphics

• Playfield

◦ One foreground, one background color (out of 128

palette)

◦ Have 20 bits of framebuffer. Each block 4 pixels wide.

Right half screen mirror or dupe of right

All you get is 40 columns, no rows

• Sprites

◦ Two sprites. 8 pixels wide. You can scale them or

duplicate them

20



◦ No height, only width. Can have own color

◦ Can’t specify location. X location you have to write a

register just as beam is where you want it

• Missile

◦ One pixel wide.

◦ Same color as playfield

21



Atari 2600 Graphics – Racing the Beam

• How can you possibly make a game from this?

• You need to “race the beam”

• Your code needs to redraw the screen just ahead of the

beam

• Real-time, you often only have a few 6502 assembly

instructions to do this and if you miss your deadline

graphics can be corrupt or the whole screen loses sync

22



Atari 2600 Graphics – Possibilities

• Asynchronous playfield – rewrite 20-bit framebuffer each

line before it is drawn

• Change colors mid screen

• Turn on/off sprites, missiles, re-use later in screen

23



Atari 2600 – Other Features

• Collision detection in hardware

• Two channel sound, not designed for music. Some notes

not physically possible to play due to clock divider

24



Atari 2600 – Examples

• Some examples in class if the projector cooperates

25


