ECE 471 — Embedded Systems
Lecture 19

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 October 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Keep thinking about project topics

e Don't forget HW#6 (due Friday)

e No class Wednesday — Engineering Career Fair

e Midterm not graded yet, will probably be a week

e Still working on HW#4 and HW#5 grades

e Seniors, don't forget advising for Spring 2026 classes!
Will be sending out an e-mail about that

Real Time Operating System

e Can provide multi-tasking/context-switching
e Can provide priority-based scheduling
e Can provide low-overhead interrupts

e Can provide locking primitives

Hard Real Time Operating System

e Can it be hard real time?

e Is it just some switch you can throw? (No)

e Simple ones can be mathematically provable

e Note: that assumes perfect hardware, there are things
like transistor metastability where you can't guarantee
hardware timings

e Otherwise, it's a best effort

Priority Based, like Vxworks

e Each task has priority O (high) to 255 (low)
e When task launched, highest priority gets to run

e Other tasks only get to run when higher is finished or
yields

e What if multiple of same priority? Then go round-robin
or similar

Free RTOS

o Useful article series about this: neps://uww.aigiey. con/en/maxer/
projects/what-is-a-realtime-operating-system-rtos/28d8087£53844decafa5000d89608016

e Footprint as low as 9K

e Pre-emptive or co-op multitasking

e Regularly scheduled tasks (vTaskDelayUntil(), i.e. blink

_ED every 10 ticks)

e Task priority

e Semaphores/Mutexes
e [imers

-y 5

https://www.digikey.com/en/maker/projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016
https://www.digikey.com/en/maker/projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016

e Stack overflow protection

nter-process communication (queues, etc)
Power management support

nterrupts (interrupt priority)

Is Regular Linux a RTOS

e Not really

e Can do priorities (“nice”) but the default ones are not
RT.

e Aside, “nice” comes from old UNIX multi-user days,
when you could be nice and give your long-running jobs
a low-priority so they wouldn't interfere with other people
doing interactive tasks

Is there an RT Version of Linux?

e For years there were outside patches

e You'd have to special patch and compile a kernel to get
support

e With the upcoming 6.12 release all the patches will be
merged and you can get better RT support

o It still might not be enabled by default on most distros

PREEMPT Kernel

e Linux PREEMPT_RT

e [aster response times

e Remove all unbounded latencies

e Change locks and interrupt threads to be pre-emptible

e Have been gradually merging changes upstream

Typical kernel, when can you pre-empt

e \When user code running

e \When a system call or interrupt happens

e When kernel blocks on mutex (lock) or voluntarily yields

e If a high priority task wants to run, and the kernel is
running, it might be hundreds of milliseconds before you
get to run

e Pre-empt patch makes it so almost any part of kernel can
be stopped (pre-empted). Also moves interrupt routines
iInto pre-emptible kernel threads.

/Y 10

Linux PREEMPT Kernel

e What latencies can you get?
10-30us on some x86 machines

e Depends on firmware; SMI interrupts (secret system
mode, can't be blocked, emulate USB, etc.)
Slow hardware; CPU frequency scaling; nohz

e Special patches, recompile kernel

/Y 11

Linux Real Time Priorities

e Linux Nice: -20 to 19 (lowest), use nice command
e Real Time: 0 to 99 (highest)

e Appears in ps as 0 to 1397

e Can set with chrt command (see HW+6)

12

Co-operative real-time Linux

e Xenomai

e Linux run as side process, sort of like hypervisor

13

List of some other RTOSes

e Vxworks (the Martian)
e Neutrino
e Free RTOS
e Microsoft Windows / RTX64 extensions
e MongooseOS https://lwn.net/Articles /733297 /
e ThreadX (in the Pi GPU)
Bought by Microsoft. Azure RTOS / Eclipse ThreadX

-y 14

h

Coding Tips when trying to Write Real
Time Code

15

Challenges with Interrupts

e Why are interrupts slow?

e Shared lines,

have to run all handlers

e On Cortex-A systems have one IRQ line, have to query
all to see what caused it. Cortex-M improves this by
having dedicated vector for each piece of hardware

e When can they not be pre-empted? I|IRQ disabled? If

a driver real

y wanted to pause 1ms for hardware to be

ready, would
sleep

often turn off IRQ and spin rather than

16

e Higher priority IRQs? FIR on ARM?
e Top Halves / Bottom Halves

17

Challenges with Threading

e A thread is a unit of executing code with its own program
counter and own stack
e It's possible to have one program/process have multiple
threads of execution, sharing the same memory space
o Why?
o Traditionally, to let part of program keep running when
another part waiting on 1/O (gui keep drawing while

waiting for input, sound playing in background during
game, etc)

/Y 18

o Lets one program spread work across multiple cores
e This complicates the scheduler, and also makes priority
more complex

-y 19

Challenges with Locks

e When shared hardware /software and more than one thing
might access at once

e Example:
o thread 1 read temperature, write to temperature

variable

o thread 2 read temperature variable to write to display
o each digit separate byte

O

O

emperature was 79.9, but new is 80.0

hread 1 writing this

20

o What if Thread 2 reads part-way through? Could you
get 89.97
e Is this only a SMP problem? What about interrupts?

/Y 21

More on Locks

e Previous was example of Race Condition (two threads
“racing” to access same memory)
e How do you protect this? With a lock
o Special data structure, allows only one thread inside
the locked area at a time
o This is called a “critical section”

lock (&temp_lock); lock (&temp_lock);
write_display () ; read_temperature () ;
unlock (&temp_lock) ; unlock (&temp_lock) ;

Locking even on Single Core

e Can you have race conditions on a single core?
o Yes, with interrupts
o On simple systems you can just disable interrupts
during critical section
o Usually can’t do that if have an OS

-y 23

Lock Implementation

e Implemented with special instructions, in assembly
language

e Usually you will use a library, like pthreads

e mutex/spinlock

e Atomicity

-y 24

Memory Allocation in Embedded Systems

e Modern systems memory access Is slow and complicated

e Caches add lots of jitter (can you disable them?)

e Virtual Memory also can cause unexpected delays (run
on MMU-less system?)

e There are some things you can do in software to make
things a bit better

-y 25

Memory Allocation — Dynamic

e Using malloc()/calloc() or new()

e In C have to make sure you free() at end

e These aren't Linux syscall interfaces. The OS provides
typically provides big chunks of RAM through the brk ()
and mmap () interfaces

e Some sort of library manages these bigger chunks, tracks
usage and size, and tries to avoid fragmentation

e Usually on Linux you use the C library malloc() but you
can also use custom libraries instead

/Y 26

Dynamic Memory Downsides

e \What to do if fails?
Can you handle that? What if error code also tries to
alloc?

e Timing overhead? Is it deterministic?
Especially problem with high-level languages and garbage
collection

e Fragmentation: when there's plenty of RAM free but it's
in small chunks when you need a large chunk

-y 27

Can You use Static Allocation Instead?

e Allocate all memory you need at startup

e [ail early

e This isn't always possible, but avoids issues with failure,
overhead, etc.

e Free RTOS (newer) allows static allocation at compile
time

-y 28

Linux Virtual Memory Issues

e Even if you statically allocate memory, on system with
virtual memory it might swap out to disk

e [his can suddenly make your code unexpectedly slower,
ruin real-time performance

e Can you prevent this?

o mlockall() syscall can lock memory so it stays in
RAM, never goes to disk

o So at start of program, allocate RAM, touch it (or
prefault) to bring it in, then mlock() it

/Y 29

o Generally need to be root (why?)

30

Next up is SPI

Start early on it as there's more than one lecture of material

-y 31

