
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 October 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Keep thinking about project topics

• Don’t forget HW#6 (due Friday)

• No class Wednesday – Engineering Career Fair

• Midterm not graded yet, will probably be a week

• Still working on HW#4 and HW#5 grades

• Seniors, don’t forget advising for Spring 2026 classes!

Will be sending out an e-mail about that

1



Real Time Operating System

• Can provide multi-tasking/context-switching

• Can provide priority-based scheduling

• Can provide low-overhead interrupts

• Can provide locking primitives

2



Hard Real Time Operating System

• Can it be hard real time?

• Is it just some switch you can throw? (No)

• Simple ones can be mathematically provable

• Note: that assumes perfect hardware, there are things

like transistor metastability where you can’t guarantee

hardware timings

• Otherwise, it’s a best effort

3



Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

4



Free RTOS

• Useful article series about this: https://www.digikey.com/en/maker/

projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016

• Footprint as low as 9K

• Pre-emptive or co-op multitasking

• Regularly scheduled tasks (vTaskDelayUntil(), i.e. blink

LED every 10 ticks)

• Task priority

• Semaphores/Mutexes

• Timers

5

https://www.digikey.com/en/maker/projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016
https://www.digikey.com/en/maker/projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016


• Stack overflow protection

• Inter-process communication (queues, etc)

• Power management support

• Interrupts (interrupt priority)

6



Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

• Aside, “nice” comes from old UNIX multi-user days,

when you could be nice and give your long-running jobs

a low-priority so they wouldn’t interfere with other people

doing interactive tasks

7



Is there an RT Version of Linux?

• For years there were outside patches

• You’d have to special patch and compile a kernel to get

support

• With the upcoming 6.12 release all the patches will be

merged and you can get better RT support

• It still might not be enabled by default on most distros

8



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

9



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel blocks on mutex (lock) or voluntarily yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

10



Linux PREEMPT Kernel

• What latencies can you get?

10-30us on some x86 machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB, etc.)

Slow hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

11



Linux Real Time Priorities

• Linux Nice: -20 to 19 (lowest), use nice command

• Real Time: 0 to 99 (highest)

• Appears in ps as 0 to 139?

• Can set with chrt command (see HW#6)

12



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

13



List of some other RTOSes

• Vxworks (the Martian)

• Neutrino

• Free RTOS

• Microsoft Windows / RTX64 extensions

• MongooseOS https://lwn.net/Articles/733297/

• ThreadX (in the Pi GPU)

Bought by Microsoft. Azure RTOS / Eclipse ThreadX

14

h


Coding Tips when trying to Write Real
Time Code

15



Challenges with Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• On Cortex-A systems have one IRQ line, have to query

all to see what caused it. Cortex-M improves this by

having dedicated vector for each piece of hardware

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

16



• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

17



Challenges with Threading

• A thread is a unit of executing code with its own program

counter and own stack

• It’s possible to have one program/process have multiple

threads of execution, sharing the same memory space

• Why?

◦ Traditionally, to let part of program keep running when

another part waiting on I/O (gui keep drawing while

waiting for input, sound playing in background during

game, etc)

18



◦ Lets one program spread work across multiple cores

• This complicates the scheduler, and also makes priority

more complex

19



Challenges with Locks

• When shared hardware/software and more than one thing

might access at once

• Example:

◦ thread 1 read temperature, write to temperature

variable

◦ thread 2 read temperature variable to write to display

◦ each digit separate byte

◦ Temperature was 79.9, but new is 80.0

◦ Thread 1 writing this

20



◦ What if Thread 2 reads part-way through? Could you

get 89.9?

• Is this only a SMP problem? What about interrupts?

21



More on Locks

• Previous was example of Race Condition (two threads

“racing” to access same memory)

• How do you protect this? With a lock

◦ Special data structure, allows only one thread inside

the locked area at a time

◦ This is called a “critical section”
lock(& temp_lock ); lock(& temp_lock );

write_display (); read_temperature ();

unlock (& temp_lock ); unlock (& temp_lock );

22



Locking even on Single Core

• Can you have race conditions on a single core?

◦ Yes, with interrupts

◦ On simple systems you can just disable interrupts

during critical section

◦ Usually can’t do that if have an OS

23



Lock Implementation

• Implemented with special instructions, in assembly

language

• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

24



Memory Allocation in Embedded Systems

• Modern systems memory access is slow and complicated

• Caches add lots of jitter (can you disable them?)

• Virtual Memory also can cause unexpected delays (run

on MMU-less system?)

• There are some things you can do in software to make

things a bit better

25



Memory Allocation – Dynamic

• Using malloc()/calloc() or new()

• In C have to make sure you free() at end

• These aren’t Linux syscall interfaces. The OS provides

typically provides big chunks of RAM through the brk()

and mmap() interfaces

• Some sort of library manages these bigger chunks, tracks

usage and size, and tries to avoid fragmentation

• Usually on Linux you use the C library malloc() but you

can also use custom libraries instead

26



Dynamic Memory Downsides

• What to do if fails?

Can you handle that? What if error code also tries to

alloc?

• Timing overhead? Is it deterministic?

Especially problem with high-level languages and garbage

collection

• Fragmentation: when there’s plenty of RAM free but it’s

in small chunks when you need a large chunk

27



Can You use Static Allocation Instead?

• Allocate all memory you need at startup

• Fail early

• This isn’t always possible, but avoids issues with failure,

overhead, etc.

• Free RTOS (newer) allows static allocation at compile

time

28



Linux Virtual Memory Issues

• Even if you statically allocate memory, on system with

virtual memory it might swap out to disk

• This can suddenly make your code unexpectedly slower,

ruin real-time performance

• Can you prevent this?

◦ mlockall() syscall can lock memory so it stays in

RAM, never goes to disk

◦ So at start of program, allocate RAM, touch it (or

prefault) to bring it in, then mlock() it

29



◦ Generally need to be root (why?)

30



Next up is SPI

Start early on it as there’s more than one lecture of material

31


