ECE 471 — Embedded Systems
Lecture 20

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 QOctober 2025

https://web.eece.maine.edu/~vweaver

Announcements

e HW#6 due today

e HW=7 will be posted today

e Midterms still being graded

e Hand out SPI hardware (MCP3008, TMP36, two extra
wires)

e Hold on to your LED displays (and these temperature
probes) until after Homework #9

e Seniors: don't forget about advising
e |I'll be teaching ECE435 and ECE177 in the Spring

-y 1

SPI bus

e Serial Peripheral Interface Bus
e Synchronous full-duplex serial bus named/formalized by
Motorola. No real standard.

o W
o \\VW
o W

nat @
nat @

nat @

oes serial mean? (one bit at a time)
oes synchronous mean? (Separate clock line)
oes full-duplex mean? (Transmit and receive at

same time)

What used for?

e LCD displays [sic]

e Optional interface to SD cards
e LED strips

e JTAG debugging

e Analog Digital Converters

Hardware Setup

e Controller/Device with multiple device select lines
e 4-wire bus (plus power/ground)

e SCLK — serial clock (output from controller)

e MOSI — master out, slave in

e MISO — master in, slave out
Must be high impedance if more than one device

Master

e CS0, CS1, etc — device chip selects

Slave 0

CLCK
MOSI

MISO
CSO

CS1
CSN

CLCK
MISO
MOSI
CS

Slave 1

Slav.é. N

CLCK
MISO

MOSI
CS

SPI protocol

e Controller pulls chip-select of desired device low

e Controller starts clock
No set speed, just what the device can handle.

Up to a few MHz (Pi in theory 128MHz, 16MHz more
realistic)

e Must both send *and* receive (at same time over
MISO /MOSI wires)

Doesn't have to be useful, but data must go both ways

-y 6

e Controller transmits data bits as long as it has it. When
done turns off clock and maybe deselects device.

e It's basically just a shift register in the controller and
device, and you rotate through enough bits to swap the
values in each, then both sides can read out the transfer.

Master Slave

MOSI

MISO

Clock Polarity/Phase

e Many have adopted Freescale’'s terminology

o CPO

- CP
- CP

| =0 — base clock is zero

HA=0 — data captured on rising edge

HA=1 — data captured on falling edge

e CPOL=1 — base clock is one

— CPHA=0 — data captured on falling edge
— CPHA=1 - data captured on rising edge

e Also given as “mode” numbers, 0 - 3. CPOL/CPHA.
This can vary by manufacturer. Check your data sheet!

e Timing diagram from Wikipedia (CC BY-SA 3.0)

CPOL=0 _ M\
SCK cpol=1—/\ A\ nnnr—

SS \ [~
Cycle# T X2 3 Y4 Y56 X7 X8
CPHA=0 MISOZO X2 3 a4 5 678z
MOSI ZX 1 Y2 {3 Y456)78z

Cycle # 123 Y24 567 8)X

CPHA=1 MISO DI 2 345 e 7 ez

MOSI 2T X2 X3 Y45 678z

Connection

e “independent” — One device per select line

e “daisy-chain” — MISO to MOSI, like long chain of shift
registers, only need one device select line.

-y 10

Interrupts

e Possible... think touch screens and such. Not officially
specified

/Y 11

Errors

e No way to indicate errors

e Some chips will ignore if invalid data sent (wrong number
of bits) some not

/Y 12

SPI| advantages

o full-duplex

e can be fast (no set speed limit)

e arbitrary message size in bits

e low power (no pullup resistors)

e Simple implementation (can be just 74HC495 shift reg)
e no arbitration

® No unique ids

e unidirectional signals

e clock provided by master (no oscillator needed in slaves)

/Y 13

SPI disadvantages

e more pins (4 plus ground plus power plus one more each
slave)

e short distances (few meters, 10 feet or so?)
e no flow control
® NO error reporting

e no standard

-y 14

12c benefits vs SPI

requires fewer wires

shared bus (no need for lots of chip select)

nack when data received

can have multiple masters

less susceptible to noise (some sites claim this)

can transmit longer distances (other sites claim this,
probably varies with speed you're attempting)

e has a formal standard

-y 15

SPI benefits vs i2c

e lower power

e potentially faster, full-duplex

e i2c can be brought down by one bad device (though SPI
probably can too it's just less likely)

-y 16

SPI bus on Raspberry Pi

e [he broadcom SPI1 bus is on the header

e Pin 23 — SCLK

e Pin 19 — MOSI

e Pin 21 — MISO

e Pin 24 — CEO

e Pin 26 — CE1

e Unlike some boards, no nIRQ (SPI interrupt) pin

e Also note on Pl SCLK is generated from CPU clock so
it might change if frequency scaling happens

-y 17

SPI bus on Linux

e On recent Pis, SPI is enabled through devicetree. You
can run sudo raspi-config, select interfaces, then
SPI, then say yes to enable and at boot.

e On older systems you might have to do this manually
by modprobe spi-bcm2835; even older kernels it has a
different name: modprobe spi-bcm2708

e dmesg | grep spi will show useful debug

e [o get the user interface modprobe spidev

-y 18

SPI dev interface — Opening

® https://www.kernel.org/doc/Documentation/spi/spidev

e /dev/spidevB.C (B=bus, C=slave number).
On pi it is /dev/spidev0.0

e Other wuseful info Iin /sys/devices/.../spiB.C,
/sys/class/spidev/spidevB.C

e To open the device, do something like the following

spi_fd=open("/dev/spidev0.0",0_RDWR);

/Y 19

https://www.kernel.org/doc/Documentation/spi/spidev

SPI dev interface — Configuring

e [0 set the write mode, use ioctl:

int mode=SPI_MODE_O;
result = ioctl(spi_fd, SPI_IOC_WR_MODE, &mode);

Modes can be SPI_MODE_O through 3, or else you can
build them out of SPI_CPOL and SPI_CPHA values.
Current mode can be read back with SPI_I0C_RD_MODE

e [0 set the bit order, use ioctl:

int lsb_mode=0;
result = ioctl(spi_fd, SPI_IOC_WR_LSB_FIRST, &lsb_mode);

Current can be read with SPTI_IOC_RD_LSB_FIRST

-y 20

Get/Set if MSB s first (common) or LSB s first.

Empty bits padded to left with zeros no matter what the
setting.

e SPI_TI(OC_RD_BITS_PER_WORD, SPI_I0OC_WR_BITS_PER_WOE
Number of bits in each transfer word. Default (0) is 8
bits.

e SPI_TOC_RD_MAX_SPEED_HZ, SPI_I0C_WR_MAX_SPEED_HZ
Set the maximum clock speed.

/Y 21

SPI dev interface — Reading/Writing

e By default using read() or write () on the device node
will only do half-duplex.

e For full duplex support you need something like the
following:

#define LENGTH 3

int result;

struct spi_ioc_transfer spi;

unsigned char data_out [LENGTH]={0x1,0x2,0x3};
unsigned char data_in[LENGTH];

/* kernel doesn’t like it if stray values, even in padding */
memset (&spi,0,sizeof (struct spi_ioc_transfer));

/* Setup full-duplex transfer of 3 bytes x/

-y 2

spi.tx_buf = (unsigned long)&data_out;

spi.rx_buf = (unsigned long)&data_in;
spi.len = LENGTH;

spi.delay_usecs = 0 ;

spi.speed_hz = 100000 ; // required
spi.bits_per_word = 8 ;

spi.cs_change = 0 ;

/* Run one full-duplex transaction x/

/* Note in SPI_IOC_MESSAGE(1) the 1 is transactions,

result = ioctl(spi_fd, SPI_IOC_MESSAGE(1),

&spi)

.
)

xnot* bytes *x/

23

Zeroed Structs in Kernel ABI

e Why is the kernel erroring out if the empty “pad” bit
not zero?

o Forward compatibility. You want to make sure that

any empty bits stay that way.

o If you want to add new functionality in the future you
nave to ensure reserved bits are all zero, otherwise old
orograms will do unexpected things (or break) if they
nad been accidentally setting those bits.

-y 24

o So why were the pad bits non-zero? Bad luck. Local
struct allocated on the stack, so if there were old values
on the stack the pad value could be non-zero.

-y 25

Analog Digital Converters on Raspberry Pl

e Unlike many other embedded boards, the Pi has no A/D
converters built in.

e You're stuck using SPI or i2c devices

/Y 26

MCP3008

o For HW#7 we'll use the MCP3008 8-port 10-bit SPI
A/D converter

e up to 100ksp (samples per second)
e 2.7 to 5.5V
e 10-bits of accuracy

e 8 single-ended inputs (vs ground) or 4 ‘“pseudo-
differential” inputs (vs each other)

-y 27

e Config sent in each request packet

e Clock frequency must be long enough that the A/D has
time to convert

__ valuexVipEr
* VIN = 524

Yes, this seems wrong (can never have full Vggp output)
but this is what the data sheet says to use

/Y 28

MCP3008 ;.controller mode

e Datasheet describes way to easily use from a device

e Send 3 bytes. First has value ‘1’ (start bit). The second
has the top 4 bits being single/diff followed by 3 bits of
channel you want. The rest is all Os for padding.

e 00000001 SCCCO0O00 00000000

e You read back 3 bytes. First 13 bits are don't care
(ignore) followed by 0 then the 10 bits of sample.

& XXXXXXXX XXXXX098 76543210

-y 29

Getting 10 bits spread across two bytes into
an integer

e You'll want to get the data in sata a1 and aata_inzr cOmbine
it into 10 bits in an integer variable (which are usually
32 bits)

e You probably want to mask off the don’t care bits in case
they have extraneous 1s in them, recall that something

like

x=x&0x7 // preserve bottom 3 bits, clear top to O

iIn C can be used to mask off unwanted bits to O

-y 30

e To get the 2 bits from the 8-bit value up to bits 9 and
10 you'll want to shift left by 8, in C something like

y=char_value <<8;

e [hen you can combine that with another 8 bit value by
bitwise-oring or adding in the value

e If you're being really fancy you can put all 3 of the above
steps in one line of code

-y 31

TMP36

e Be sure you use the right chip, looks like a transistor,
says TMP36 on it (not Dallas, that's the 1-wire chip)

e Linear temperature sensor

e The temperature can be determined with the following
equation:
deg_C = (100 x voltage) — 50

e Also the following might be useful:
deg_F = (deg_C x 2) + 32

e Be careful hooking up! If vdd/gnd switched it heats up

-y 2

to scalding temperatures (the datasheet lists the pinout
from the bottom). If you catch it in time doesn’t seem
to be permanently damaged.

/Y 33

More SPI bits

e For devices needing higher bandwidth, often flash or

RAM of some sort

e Dual SPI — half duplex. Uses MISO instead to be second
data line, send two bits at once to double bandwidth

e Quad SPI - half duplex, adds two extra lines to send 4
bits per clock cycle

e OctoSPI — 8 bits at once?

e HexideciSPIl (HSPI) and XSPI — even move, not sure if
STM is just making things up

-y 34

Other SPI variants

e Safe SPl — stricter standard used in automotive
applications

e three wire — data one way, only 3 wires

e microwire — half duplex

o Jtag

-y 35

Floating Point in C

e Converting int to floating point:

int value=45;
double temp;

temp=value; // works, but truncates
temp=(float)value; // casts make the conversion explicit
// but can potentially hide bugs

e float vs double
float is 32-bit, double 64-bit

e Constants 9/5 vs 9.0/5.0
The first is an integer so just “1". Second is expected

-y 36

1.8.

e Printing. First prints a double. Second prints a double
with only 2 digits after decimal.

printf ("%f\n",temp); // print 32-bit float
printf ("%1f\n",temp); // print 64-bit double (long float)
printf ("% .21f\n",temp); // print double with 2 digits after .

e Explicit converting float/double to integer (rather than
cast)

o floor()

ceil()
round()

rint()

nearbyint()

O
O
O
O

-y 37

