
ECE 471 – Embedded Systems
Lecture 24

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 November 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Demosplash

• HW#8 was posted, pick up hardware if you haven’t

• Don’t forget project ideas for Friday (7th)

E-mail, one per group, with group members and topic

Please e-mail even if I said it was OK in person

1



Current Events: Daylight Savings

• Clock math always hard for computers

• Can you hardcode start/stop days for Daylight Savings?

• Some states don’t follow it (mostly AZ these days)

• Congress can (and has) changed it on fairly short notice

• Other countries this happens yearly

• You will often see OS / firmware updates because of this

2



Avoiding DST problems

• Linux/UNIX often had system clock UTC + offset rather

than trying to have it set to local time

• Old Windows/DOS would use local time which could

cause problems

3



Embedded System Security: Voting

• Election Tuesday

• Are voting machines embedded systems?

• Can elections be hacked?

• Most reports of hacking are social engineering type (i.e.

Foreign Country buys deceptive Facebook ads)

4



Voting Machine Types

• Vary a lot by state and even town (good is some ways,

hard to target them all)

• Old fashioned: purely paper, machines with levers

• Like Maine: mark paper ballot, use embedded system to

count, have paper trail if need recount

• Touch-screen voting (often encouraged for accessibility),

OK if it prints paper ballot you can later hand count

• Fully electronic with no paper trail, difficult to audit

• Even worse: all internet voting

5



• Mail in votes have their own issues, make votes possibly

non-anonymous so people can pressure/bribe you to vote

a certain way

• Maine Question #1 in 2025

6



Voting Machine Hacking

• Some voting machines found trivial to hack. Running

windows, with exposed USB connector.

• How did researchers get access to them. (eBay)

• Attacks often have to be local unless you happen to hack

main database

7



Why hard to audit/secure?

• Often are old and not tested well (Windows XP, only

used once a year)

• Run by small teams in towns w/o much IT experience

• Often bought from lowest bidder

• Can you trust the software? What if notices it is Election

Day and only then flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

• What if the OS does it. What if Windows had code that

8



on Election Day looked for a radio button for Party A

and silently changed it to Party B when pressed?

• OK you have and audit the source code. What about

the compiler? (Reflections on Trusting Trust). What

about the compiler that compiled the compiler?

• And of course the hardware, but that’s slightly harder to

implement but a lot harder to audit.

9



Summary of Shared vs Static Libraries

• Shared libraries, only need one copy of code on disk and

in memory

◦ Good for embedded system (less room needed)

◦ Good for security updates (only need to update lib,

not every program using it

• Static libraries, all libraries included

◦ No dependencies

• These days maybe containers, docker, kubertenes

• Also Flatpack, Snap. Why? Stability, Know package

10



will work on all distributions, Not have to install

dependencies

• Can use ldd to view library usage

11



More on Firmware – Where to Draw Line?

• On desktop, the bootloader and kernel considered

software

• On embedded system, if those are in flash or otherwise

hard to access, would be firmware

12



Embedded System Firmware

• Many devices are their own embedded systems these

days.

Lots of small things have microcontroller inside

• What is firmware?

• Code that runs on an embedded system

◦ Is it only bare metal?

◦ Could a full Operating System be included?

• Traditionally is a binary “blob”

• In ROM? Or upgradable? Why might you want to

13



upgrade? (bug fixes, economy, etc.)

14



Binary Blobs

• What is in the firmware?

◦ Can you modify it yourself?

• Can it contain a full operating system?

◦ ThreadX on Pi, Minix on Intel servers?

• Where does it live?

◦ Hardcoded in ROM?

◦ Upgradable by flash?

◦ RAM that’s uploaded at boot?

15



Non-persistent Firmware

• RAM that gets uploaded after boot (loses state on power

off)

What happens if your hard-drive or some other boot

critical hardware uses this?

• Can be annoying if writing low-level code, you bought

hardware but it might not work at all unless you upload

a bunch of firmware to it each time you power up

16



Open Source Firmware Issues

• Can you run a “completely” free computer with

completely open software?

• Note the different uses of Free

◦ Free as in Freedom/Liberty to use code as you wish

◦ Free as in no cost to you

• Depends on how you classify firmware

17



Linux Firmware Issues

• licensing issues

• can boot media (CD, USB) ship with firmware

• What if distro (like Debian) has rules against non-open

binaries

• Can you netboot if the network card requires proprietary

firmware (common problem with wifi cards)

• Weird workarounds, webcam that had MacOS driver so

had to extract firmware from that and copy to Linux

partition

18



Firmware Licensing Issues

• Is a computer system truly free software if binary blobs

running (like on a Pi)

◦ Aside, FSF has weird definition where they only get

upset about updatable firmware

• Debian tried to have a firmware-free install by default,

but had to give up as not practical (especially at install)

• If someone ships firmware that has GPL code in it, what

are their responsibilities?

19



Offloading Work to Firmware

• Companies don’t like sharing their code, which makes

things like Linux drivers hard

• Can they put as much as possible into firmware with

only a small stub in OS?

◦ Benefit: OS does less work, is simpler

◦ Downside: you have no idea what the code is doing

• On Linux, NVIDIA drivers famously contentious.

Possibly they are now planning to push more and more

code onto firmware on the card itself

20


