ECE 471 — Embedded Systems
Lecture 24

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 November 2025


https://web.eece.maine.edu/~vweaver

Announcements

e Demosplash
o HW+#8 was posted, pick up hardware if you haven't

e Don't forget project ideas for Friday (7th)
E-mail, one per group, with group members and topic
Please e-mail even if | said it was OK in person



Current Events: Daylight Savings

e Clock math always hard for computers

e Can you hardcode start/stop days for Daylight Savings?
e Some states don't follow it (mostly AZ these days)

e Congress can (and has) changed it on fairly short notice
e Other countries this happens yearly

e You will often see OS / firmware updates because of this



Avoiding DST problems

e Linux/UNIX often had system clock UTC + offset rather
than trying to have it set to local time

e Old Windows/DQOS would use local time which could
cause problems



Embedded System Security: Voting

e Election Tuesday

e Are voting machines embedded systems?

e Can elections be hacked?

e Most reports of hacking are social engineering type (i.e.
Foreign Country buys deceptive Facebook ads)



Voting Machine Types

e Vary a lot by state and even town (good is some ways,
hard to target them all)

e Old fashioned: purely paper, machines with levers

e Like Maine: mark paper ballot, use embedded system to
count, have paper trail if need recount

e Touch-screen voting (often encouraged for accessibility),
OK if it prints paper ballot you can later hand count

e Fully electronic with no paper trail, difficult to audit

e Even worse: all internet voting

-y 5



e Mail in votes have their own issues, make votes possibly
non-anonymous so people can pressure/bribe you to vote
a certain way

e Maine Question #1 in 2025



Voting Machine Hacking

e Some voting machines found trivial to hack. Running
windows, with exposed USB connector.

e How did researchers get access to them. (eBay)

e Attacks often have to be local unless you happen to hack
main database



Why hard to audit/secure?

e Often are old

and not tested well (Windows XP, only

used once a year)
e Run by small teams in towns w/o much IT experience
e Often bought from lowest bidder

e Can you trust t
Day and only t

he software? \What if notices it is Election
nen flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

e What if the OS does it. What if Windows had code that

8



on Election Day looked for a radio button for Party A
and silently changed it to Party B when pressed?

e OK you have and audit the source code. What about
the compiler? (Reflections on Trusting Trust). What
about the compiler that compiled the compiler?

e And of course the hardware, but that's slightly harder to
implement but a lot harder to audit.



Summary of Shared vs Static Libraries

e Shared libraries, only need one copy of code on disk and
In memory
o Good for embedded system (less room needed)
o Good for security updates (only need to update lib,
not every program using it
e Static libraries, all libraries included
o No dependencies
e [hese days maybe containers, docker, kubertenes
e Also Flatpack, Snap. Why? Stability, Know package

-y 10



will work on all distributions, Not have to install
dependencies
e Can use 1dd to view library usage

/Y 11



More on Firmware — Where to Draw Line?

e On desktop, the bootloader and kernel considered
software

e On embedded system, if those are in flash or otherwise
hard to access, would be firmware

/Y 12



Embedded System Firmware

e Many devices are their own embedded systems these
days.
Lots of small things have microcontroller inside
e What is firmware?
e Code that runs on an embedded system
o Is it only bare metal?
o Could a full Operating System be included?
e [raditionally is a binary “blob”
e In ROM? Or upgradable? Why might you want to

-y 13



upgrade? (bug fixes, economy, etc.)

14



Binary Blobs

e \What is in the firmware?
o Can you modify it yourself?
e Can it contain a full operating system?
o ThreadX on Pi, Minix on Intel servers?
e Where does it live?
o Hardcoded in ROM?
o Upgradable by flash?
o RAM that's uploaded at boot?

15



Non-persistent Firmware

e RAM that gets uploaded after boot (loses state on power
off)
What happens if your hard-drive or some other boot
critical hardware uses this?

e Can be annoying if writing low-level code, you bought
hardware but it might not work at all unless you upload
a bunch of firmware to it each time you power up

/Y 16



Open Source Firmware Issues

e Can you run a ‘“completely” free computer with
completely open software?

e Note the different uses of Free
o Free as in Freedom/Liberty to use code as you wish
o Free as in no cost to you

e Depends on how you classify firmware

-y 17



Linux Firmware lIssues

e licensing Issues

e can boot media (CD, USB) ship with firmware

e What if distro (like Debian) has rules against non-open
binaries

e Can you netboot if the network card requires proprietary
firmware (common problem with wifi cards)

e \Weird workarounds, webcam that had MacQOS driver so
had to extract firmware from that and copy to Linux
partition

/Y 18



Firmware Licensing Issues

e Is a computer system truly free software if binary blobs
running (like on a Pi)
o Aside, FSF has weird definition where they only get
upset about updatable firmware
e Debian tried to have a firmware-free install by default,
out had to give up as not practical (especially at install)
e If someone ships firmware that has GPL code in it, what
are their responsibilities?

/Y 19



Offloading Work to Firmware

e Companies don't like sharing their code, which makes
things like Linux drivers hard

e Can they put as much as possible into firmware with
only a small stub in OS?

o Benefit: OS does less work, is simpler
o Downside: you have no idea what the code is doing
e On Linux, NVIDIA drivers famously contentious.

Possibly they are now planning to push more and more
code onto firmware on the card itself

-y 20



