ECE 471 — Embedded Systems
Lecture 26

Vince Weaver
https://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 November 2025


https://www.eece.maine.edu/~vweaver

Announcements

o HW+#8 is due
e Project topics are due
e Midterm #2 on Wednesday November 19th

o HW=£9 will be posted, you can have two weeks as it's a
bit harder



Hand back and go over Midterm

Average grade was an 88%



HW#9 — Summary

e Use a temperature probe (either SPI or 1l-wire) and
output the result to the i12c display
o Re-use i2c display code from earlier homework

o Re-use temp code (either TMP36 or the 1-wire)

o Display the temperature on display

e When done can turn back in parts (assuming you aren't
using them for the project)




HW#9 Notes — Modular Code

e In previous homeworks we put everything in one C file
e This isn't really practical for large projects

e By splitting things up into smaller files you can have
some benefits:

o Easier to organize/find code

o Can re-use code easier

o Less chance of merge conflicts when multiple people
working on project in git

o Can take common code and make libraries

-y 4



HW#9 — Writing Modular Code

e In C you can compile each C file into its own object file,
link together at end

e API defined in a header .h file

e For example In the homework, we could put
temperature read code into its own file with a double
get_temperature(void) interface

e For other C files to see this, you need to export the
definition. Usually this is done by putting the advance
definition double get_temperature(void); in a .h

-y 5



header file and then including it in the other files

e Note: don't put full C functions in header files. | know
this is a C++4 thing but it's usually frowned upon when
programming in C

e Each file does not need a main() function, you only
need one per combined program.



HW+#9 — Building Modular Code

e To link the various .o files together involves the “linker".
However it's easier to just let gcc do it (gcc knows
how to run the linker for you) gcc -o display_temp
display.o temperature.o

e The linker merges the .o files into one big executable,
and makes sure the placeholders to functions/variables
in all of the files get the right addresses/pointers to
where things live in the finished executable.

e How do you make sure when you change one C file that

-y ;



everything that uses it is also rebuilt? A well-crafted
Makefile will have all these dependencies in place and
will rebuild everything properly.

e What if you want to make an official library? Static
libraries are .a, dynamic .so. It's fairly easy to do this,
just a few extra command line tools like ar or maybe
even just using —shared to gcc



HW+#9 — Converting Floating Point to
Digits

e Use sprintf()

char string[128];

double temperature;

sprintf (string,"%.11f",temperature);

/* Now string[0] has first digit, stringl[l] second, etc */

e Use division/modulus

double temperature=23.4;
int hundreds,tens, ones,remainder;

hundreds=temperature/100;
remainder=temperature’,100;
tens=remainder/10;
ones=remainder?10;



HW4#9 — Specification (4 cases)

e Temperatures from 0 to 99.9 degrees, inclusive. 0.0 <
temp < 99.9 These should be displayed as two digits, a
decimal point, another digit, and then a degree symbol
(which is just a crude circle made of the top 4 segments
on the display). For example: “24.5™"

Leading zeros should be suppressed (i.e. display “2.4°"
not “02.4°", 0 should be “0.0°")

e Temperatures between -99.9 and 0 degrees. —99.9 <
temp < 0 These should display a minus sign and then

10



two digits of temperature, then the degree symbol. For

example: “-25

For temperatures between 0 and -

9.9 be sure to print

two digits of result (with decimal point). For example,

2.5

e Temperatures between 100 and 999 degrees. 100 <
temp < 999 should print three digits of temperature,
then the degree symbol. For example: “245°"

e Invalid temperatures that won't fit t
reading the thermometer) should
display) in a method that isn't a va

ne display (and errors
be reported (via the

id temperature. It is

11



your choice how to indicate this.

12



HW#9 — Writing Good Testcases

e Once you have written your nice modular code, how can
you test it?

e Need to write some test cases that test a wide range of
behaviors

e In the homework | have you think up some test cases

-y 13



