
ECE 471 – Embedded Systems
Lecture 26

Vince Weaver

https://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 November 2025

https://www.eece.maine.edu/~vweaver


Announcements

• HW#8 is due

• Project topics are due

• Midterm #2 on Wednesday November 19th

• HW#9 will be posted, you can have two weeks as it’s a

bit harder

1



Hand back and go over Midterm

Average grade was an 88%

2



HW#9 – Summary

• Use a temperature probe (either SPI or 1-wire) and

output the result to the i2c display

◦ Re-use i2c display code from earlier homework

◦ Re-use temp code (either TMP36 or the 1-wire)

◦ Display the temperature on display

• When done can turn back in parts (assuming you aren’t

using them for the project)

3



HW#9 Notes – Modular Code

• In previous homeworks we put everything in one C file

• This isn’t really practical for large projects

• By splitting things up into smaller files you can have

some benefits:

◦ Easier to organize/find code

◦ Can re-use code easier

◦ Less chance of merge conflicts when multiple people

working on project in git

◦ Can take common code and make libraries

4



HW#9 – Writing Modular Code

• In C you can compile each C file into its own object file,

link together at end

• API defined in a header .h file

• For example in the homework, we could put

temperature read code into its own file with a double

get temperature(void) interface

• For other C files to see this, you need to export the

definition. Usually this is done by putting the advance

definition double get temperature(void); in a .h

5



header file and then including it in the other files

• Note: don’t put full C functions in header files. I know

this is a C++ thing but it’s usually frowned upon when

programming in C

• Each file does not need a main() function, you only

need one per combined program.

6



HW#9 – Building Modular Code

• To link the various .o files together involves the “linker”.

However it’s easier to just let gcc do it (gcc knows

how to run the linker for you) gcc -o display temp

display.o temperature.o

• The linker merges the .o files into one big executable,

and makes sure the placeholders to functions/variables

in all of the files get the right addresses/pointers to

where things live in the finished executable.

• How do you make sure when you change one C file that

7



everything that uses it is also rebuilt? A well-crafted

Makefile will have all these dependencies in place and

will rebuild everything properly.

• What if you want to make an official library? Static

libraries are .a, dynamic .so. It’s fairly easy to do this,

just a few extra command line tools like ar or maybe

even just using -shared to gcc

8



HW#9 – Converting Floating Point to
Digits

• Use sprintf()
char string [128];

double temperature;

sprintf(string ,"%.1lf",temperature );

/* Now string [0] has first digit , string [1] second , etc */

• Use division/modulus
double temperature =23.4;

int hundreds ,tens , ones ,remainder;

hundreds=temperature /100;

remainder=temperature %100;

tens=remainder /10;

ones=remainder %10;

9



HW#9 – Specification (4 cases)

• Temperatures from 0 to 99.9 degrees, inclusive. 0.0 ≤
temp ≤ 99.9 These should be displayed as two digits, a

decimal point, another digit, and then a degree symbol

(which is just a crude circle made of the top 4 segments

on the display). For example: “24.5°”
Leading zeros should be suppressed (i.e. display “2.4°”
not “02.4°”, 0 should be “0.0°”)

• Temperatures between -99.9 and 0 degrees. −99.9 ≤
temp < 0 These should display a minus sign and then

10



two digits of temperature, then the degree symbol. For

example: “-25°”
For temperatures between 0 and -9.9 be sure to print

two digits of result (with decimal point). For example,

“-2.5°”
• Temperatures between 100 and 999 degrees. 100 ≤
temp ≤ 999 should print three digits of temperature,

then the degree symbol. For example: “245°”
• Invalid temperatures that won’t fit the display (and errors

reading the thermometer) should be reported (via the

display) in a method that isn’t a valid temperature. It is

11



your choice how to indicate this.

12



HW#9 – Writing Good Testcases

• Once you have written your nice modular code, how can

you test it?

• Need to write some test cases that test a wide range of

behaviors

• In the homework I have you think up some test cases

13


