
ECE 498 – Linux Assembly
Language
Lecture 3

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

20 November 2012

Statically Linked C Hello-World
Disassembly of section .text:

08048320 <main >:

8048320: 55 push %ebp

8048321: 89 e5 mov %esp ,%ebp

8048323: 83 e4 f0 and $0xfffffff0 ,%esp

8048326: 83 ec 10 sub $0x10 ,%esp

8048329: c7 04 24 b0 84 04 08 movl $0x80484b0 ,(% esp)

8048330: e8 bb ff ff ff call 80482 f0 <puts@plt >

8048335: b8 05 00 00 00 mov $0x5 ,%eax

804833a: c9 leave

804833b: c3 ret

1

Compile Hello World with C Compiler

• run objdump --disassemble-all ./hello world

and search all the sections: bss, data, rodata

• look for <main> and see what it does

• look for <puts>

• Why was printf() converted into puts()?

• Note the setting up of the arguments for the function

on the stack.

2

Statically Linked Hello World

• run

objdump --disassemble-all ./hello world.static

and repeat

• This time the code for puts is included

3

Use C compiler to create assembly

• gcc -m32 -O2 -S hello world.c

• Look at generated hello world.s

4

Compiler-generated assembly
.file "hello_world.c"

.section .rodata

.LC0:

.string "Hello World!"

.text

.globl main

.type main , @function

main:

.LFB0:

.cfi_startproc

pushq %rbp

movq %rsp , %rbp

subq $16 , %rsp

movl %edi , -4(%rbp)

movq %rsi , -16(%rbp)

movl $.LC0 , %edi

call puts

movl $5 , %eax

leave

ret

.cfi_endproc

5

x86 Addressing Modes

• register : mov %eax, %ebx

• immediate : mov $5, %eax

• direct : mov 0xdeadbeef,%eax

• register indirect: mov (%ebx),%eax

• base scaled index w displacement:

mov 0xdeadbeef(%eax,%ebx,4),%ecx

gets value from 0xdeadbeef+(%eax+(%ebx*4))

6

• IP relative (64-bit only):

mov 0x8(%rip), %eax

Useful for position independent code and keeping local

variables nearby.

7

AMD64-bit extensions

• Registers now 64 bit (EAX→RAX, EBX→RBX, etc).

• 8 new general purpose registers, R8 - R15

Can access low 32, 16, and 8-bits: R8D, R8W, R8L

Instructions for accessing new 8 registers are encoded

with extra REX prefix.

• Can no longer access high-bytes (AH, BH, CH, DL)

if using a REX-prefixed (new) instruction but can now

access the low bytes of RSI, RDI, RBP and RSP (SIL,

8

DIL, BPL, SPL)

• Some instructions dropped (aaa, single-byte inc/dec)

• 8 additional XMM registers

• 32-bit loads zero-extend into 64-bit (8 and 16 bit loads

ignore top bits)

• RIP addressing – relative to RIP

9

64-bit System Calls

• System Call numbers are all different.

Done for “performance”. Newer linux architectures use

common generic syscall numbers.

• System call number in %rax

• Arguments in %rdi %rsi %rdx %r10 %r8 %r9

• %r11 and %rcx are destroyed across syscall

• Return value in %rax

10

• syscall instruction used

• int $0x80 can still be used to enter 32-bit syscalls

11

Size of int/long/pointer

• 32-bit Linux - ILP32 (integer/long/pointer all 32-bit)

• 64-bit Linux - LP64 (long and pointer 64)

• 64-bit Window IL32/P64 (only pointer 64-bit)

• new Linux “x32”: ILP32 but can use 64-bit instructions

12

String Instructions

• b/w/l/q postfix (specify size) [note intel Manual uses

b/w/d/q]

• auto increment (decrement if D (direction) flag set) after

instruction

• cmps – compare (%edi) with (%esi), increment

• lods – load value from (%esi) into %eax, increment

• ins/outs – input byte from i/o into %eax, increment

13

• movs – move (%edi) to (%esi), incrememnt

• scas – scan (%edi) for %eax, increment

• stos – store %eax to (%edi), increment

• rep/repe/repz/repne/repnz prefixes: repeat

instruction ECX times

14

LEA Instruction

• lea – load effective address

Computes the address calculation and stores calculated

address into register

• what does lea (%ebx,%ebx,4),%ebx do?

• quick way to multiply %ebx by 5 (much faster than using

%mul or discrete shift and add instructions)

15

BCD Instructions

• aaa, aad, aam, aas, daa, das

• Adjust BCD results when doing Binary-Coded-Decimal

arithmatic

16

MOV instruction

• mov – move a value to or from a register

• movzx – move with zero extend

• xchg – exchange two registers.

17

Stack Instructions

• pop, push – push or pop a register, constant, or memory

location onto the stack, then decrement the stack by the

appropriate amount

• pusha/popa (push/pop all)

• pushf/popf (push/pop flags)

18

ALU Instructions

• add, adc – add, add with carry

• sub, sbb – subtract, subtract with borrow

• dec, inc – decrement/increment

• div, idiv – divide AX or DX:AX with resulting Quotient

in AL and Remainder in AH (or Quotient in AX and

Remainder in DX)

idiv is signed divide, div unsigned

19

• mul – unsigned multiply.

multiply by AX or DX:AX and put result in DX:AX

• imul – signed multiply. Can be like mul, or can also

multiply two arbitrary registers, or even a register by a

constant and store in a third.

• cmp – compare (subtract, but sets flags only, no result

stored)

• neg – negate (2s complement)

• nop – same as xchg %eax, %eax.

20

Why does this have to be special cased on 64-bit?

There are also fancier nops of various sizes.

• cbw/cwde/cdwq – sign extend %eax

• cwd/cdq/cqo – sign extend %eax into %edx

also a quick way to clear %edx

21

Bit Instructions

• and – bitwise and

• bsf, bsr – bit scan forward or reverse

• test – bit test (bitwise and, set flags, don’t save result)

• bt/btc/btr/bts – bit test with complement/reset/set

bit

• not – bitwise not

22

• or – bitwise or

• xor – bitwise xor. Fast way to clear a register is to xor

with self

• rcl/rcr/rol/ror – rotate left/right, through carry

• sal/sar/shl/shr – shift left/right arithmatic/logical

• shld, shrd – doubler precision shift

23

Control Flow

• call/ret – call by pushing next address on stack,

jumping, return

• call *%ebx – call to address in register

• enter / leave – create stack frame

• Jcc – conditional jumps based on flags

– ja, jna (above / not above)

– jae, jnae (above equal)

24

– jb, jnb (below)

– jbe, jnbe (below equal)

– jc, jnc (carry)

– jcxz (cx == 0)

– je, jne (equal)

– jg, jng (greater)

– jge, jnge (greater equal)

– jl, jnl (less)

– jle, jnle (less or equal)

– jo, jno (overflow)

– js, jns (sign)

25

– jpe, jpo (parity)

– jz, jnz (zero)

• jmp – unconditional jump

• loop/loope/loopne – decrement CX, loop if not 0

(with loope/loopne also check zero flag)

26

Conditional Moves/Sets

• CMOVcc (all of the postfixes of jmps)

conditional move lets you do an if (CONDITION) x=y;

construct without needing any jump instructions, which

hurt performance

• i.e. cmovc = move if carry set

• SETcc – set byte on condition code

27

Flags

• lahf / sahf – load flags into or out of %ah

• clc, cld, cmc, stc, std – clear, complement or set the

various flags

28

Other Misc

• bound – check arrary bounds

• bswap – byte swap (switch endian)

• int – software interrupt. Also single-step for debug

• cmpxchg – compare and exchange, useful for locks

• cpuid – get CPU info

• rdmsr/rdtsc/rdpmc – read model specific reg,

29

timestamp, perf counter

• xadd – xchange and add, useful for locks. Can use

LOCK prefix

• xlate – do a table lookup

30

Summary

The proceeding was just a summary of integer x86

instructions.

There are numerous x86 floating point, SSE, MMX,

3Dnow! and AVX vector instructions, and others such

as specific crypto instructions.

31

