ECE 531/598 — Advanced Operating

Systems
Lecture 7

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

19 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

e Homework #3 was assigned, due Friday

e Be sure you have a serial cable if you need it.

HW#2 Review — Blinking

e Still grading this part, swapping SD card 32 times not
fun while grading, got side-tracked trying to see if | could
set up a bootloader menu or netboot to make this easier

HW#2 Review — Filesize

e Size: C about 200 bytes, assembly 68 bytes?

e Can look at .dis files for disassembly

e Init: C has 60 bytes to set things up, assembly has none

e Delay: C 64 bytes due to pessimization from volatile
(has to load/store load/store i over and over) asm 12
bytes

e C also saves/restores LR and registers to maintain calling
convention.

HW#2 Review — Other questions

e volatile — have C compiler not optimize away stores

e C array of 32-bit ints vs actually byte-wise access

e SPI1_CEN_O. Bonus SPI ports
Another good final project
Will we have a full OS? We'll have a minimal OS that
runs, does some |/O, multi-task, run small C programs
you write. Feel free to add more, in projects
| have my own version vmwOS based on OS from this
class, got stuck for a bit.

-y 4

Include File Notes

e Including with “ " versus <>

Writing printk
int printk(char *string,...) {

va_list ap;
va_start(ap, string);
int x;

while (1) {
if (*string==0) break;

if (*string==’%") A
string++;
if (*string==’d’) A
string++;
x=va_arg(ap, int);

Integer to String Conversion

This 1t the algorithm | use, there are other ways to do
it that don’'t involve the backwards step (starting off by
dividing by 1 billion and dividing the divisor by 10 each
time).

e Repeatedly divide by 10.

e Digit is the remainder. Repeat until quotient O.
e Make sure handle 0 case.

e Convert each digit to ASCII by adding 48 ('0’)
e \Why does the number end up backwards?

-y 7

Division by 10

e ARM1176 in Pi has no divide routine, why isn't this a
problem?
We are on ARMv7/v8 which does, but for backwards
compatibility we are compiling to ARMv6.

e Generic x=y/z division is not possible without fancy
work (iterative subtraction? Newton approximation?)

e Dividing by a constant Is easier

e C compiler cheats, for /10 it effectively multiplies by
1/10.

e L ook at generated assembly, you'll see it multiply by
0x66666667

e Why is it not a problem when dividing by 167

e What does the C compiler do if you do divide by a
non-constant? Makes a call to C-library or gcc-library
divide routine, which we don't link in.

e If on ARM 1176 you try to use division, C compiler will
try to call something like __aeabi_uidiv() which you
have to provide.

Can be fancy assembly, or just iterative subtraction

What are interrupts?

e A way to let hardware/software interrupt execution to
let the CPU know something important has happened.

e Notified immediately of something happening (as
opposed to polling, checking occasionally)

e Without interrupts processes can get stuck/greedy and
never let go of what they are doing.

e Do you need precise interrupts?

e Are interrupts good or bad?
o Can reduce latency... or make it worse (real-time, slow

-y 10

handler)

o Can add overhead. On OoO need to flush entire
pipeline, then enter kernel. Slow slow slow.

o Some HPC or virtual turn off interrupts if possible.

o Linux will avoid network interrupts when busy, or timer
interrupts if trying to sleep.

/Y 11

What generates interrupts?

e \What types of hardware generate interrupts?
Keyboard, timers, Network, Disk 1/0, serial etc.

e Some can be critical. Not empty UART FIFO fast
enough can drop data on floor.

e What is most frequent interrupt on typical OS? Timer
interrupt. regular timer. What is used for?
o Context switching
o Timekeeping, time accounting

/Y 12

Typical Interrupts

e Tell pointless 6502/Mockingboard example

e Set up interrupt source (Timer at 50Hz?)

e Install interrupt handler (usually vector at address that
jumps to your code to handle things)

o Handler should be fast, do whatever it needs to do (my
case, load up 14 registers with data) or even schedule
more work than later

o Disable interrupts if HW didn’t for us. Save/restore
any registers we're going to change so when we return

/Y 13

no one notices

o Handler should ACK the interrupt (let hardware know
we handled things so it doesn't retrigger as soon as we
exit)

e Enable interrupts (often need to do this two ways)

o On device (often a flag to set)

o Enable (unmask) interrupts on your CPU. Often a
processor flag.

-y 14

Exceptions and Interrupts

e All architectures are different
e ARM does it a little differently from others.

e Note ARM32 on Cortex-A (this class) can be different
than Cortex-M (like the STM32 boards in 271)

e Possibly also different in ARM64

-y 15

How to find out?

e ARM ARM for ARMv7 (27004 pages)
e Look at Linux source code
e Look at Raspberry Pi Forums

e Note Pi4 has extra gic-400 interrupt controller you need
to enable

/Y 16

ARM has various Modes

e Modes:
e States
o ISA: ARM (normal), Thumb, Jazelle, ThumbEE
o Execution state (7)
o Security: Secure and Non-secure
e Privilege Level
o If secure: PLO = user, PL1 = kernel
o If non-secure: PLO = user, PL1 = kernel, PL2 =
hypervisor

-y 17

ARM Modes

User | PLO

FIQ | PL1 fast interrupt

IRQ | PL1 interrupt

SVC | PL1 supervisor
MON | PL1 | monitor (only if security extensions)
ABT | PL1 abort

UND | PL1 undefined instruction

SYS | PL1 system

HYP | PL2 | hypervisor (only if virtual extensions)

18

ARM Modes — continued

e User mode — unprivileged, restricted. Can only move to
higher level by exception.

e System Mode — like USER, but no restrictions on
memory /registers. Sort of like running as root, cannot
enter by exception.

e Supervisor — kernel mode. SVC (syscall) instructions
take you here. Also at reset (boot).

e Abort — called if a memory or prefetch causes an
exception

-y 19

why is this useful? Virtual memory.

e Undefined — called when undefined instruction happens
why is this useful? Emulator?

e FIQ/IRQ — fast or normal interrupt

e HYP — hypervisor, for virtualization. A bit beyond this
class.

e Secure — secure mode, can lock things down.

/Y 20

ARM CPSR Register

31 30 29 28 27 25 24 23 19 16 15 10 9 8 7 6 5 4 0
RESERVED
N(Z|C|V|Q| IT |J|gazisgzp | GEI3-0] IT E|A|I|F|T Mode
Condition \ Jazelle Greater/Equal Thumb If/Then Endian >~ | Processor
Flags Saturation SIMD Interrupt Masks Thumb Mode

e Current Program Status Register

e Contains flags in addition to processor mode

e Six privileged modes

e One non-privileged: user (cannot write CPSR), now
APSR?

e Interrupts and exceptions automatically switch modes

/Y 21

ARM Interrupt Registers

User/Sys Hyp Fast IRQ Supervisor | Undefined Abort Monitor
r0
rl
r2
r3
rd
rb
ré
rf
r8 r8_fiq
r9 r9_fiq
r10 r10_fiq
r1l r11_fiq
r12 r12_fiq
r13/sp SP_hyp SP_fiq SP_irq SP_svc SP_und SP_abt SP_mon
r14/Ir LR_fiq LR_irq LR_svc LR_und LR_abt LR_mon
r15/pc
apsr
cpsr spsr_hyp spsr_fiq spsr_irq Spsr_svc spsr_und spsr_abt | spsr_mon
ELR_hyp

22

Unlike other architectures, when switching modes the ARM
hardware will preserve the status register, PC and stack and
give you mode-specific versions (register bank switching).
Also for Fast Interrupts r8-r12 are saved as well, allowing
fast handlers that do not have to save registers to the

stack.

/Y 23

ARM Interrupt Handling

e ARM core saves CPSR to the proper SPSR

e ARM core saves PC to the banked LR (possibly with an
offset)

e ARM core sets CPSR to exception mode (disables
interrupts)

e ARM core jumps to appropriate offset in vector table

-y 24

