
ECE 531/598 – Advanced Operating
Systems
Lecture 7

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #3 was assigned, due Friday

• Be sure you have a serial cable if you need it.

1

HW#2 Review – Blinking

• Still grading this part, swapping SD card 32 times not

fun while grading, got side-tracked trying to see if I could

set up a bootloader menu or netboot to make this easier

2

HW#2 Review – Filesize

• Size: C about 200 bytes, assembly 68 bytes?

• Can look at .dis files for disassembly

• Init: C has 60 bytes to set things up, assembly has none

• Delay: C 64 bytes due to pessimization from volatile

(has to load/store load/store i over and over) asm 12

bytes

• C also saves/restores LR and registers to maintain calling

convention.

3

HW#2 Review – Other questions

• volatile – have C compiler not optimize away stores

• C array of 32-bit ints vs actually byte-wise access

• SPI1 CEN 0. Bonus SPI ports

Another good final project

Will we have a full OS? We’ll have a minimal OS that

runs, does some I/O, multi-task, run small C programs

you write. Feel free to add more, in projects

I have my own version vmwOS based on OS from this

class, got stuck for a bit.

4

Include File Notes

• Including with “ ” versus <>

5

Writing printk
int printk(char *string ,...) {

va_list ap;

va_start(ap, string);

int x;

while (1) {

if (* string ==0) break;

if (* string ==’%’) {

string ++;

if (* string ==’d’) {

string ++;

x=va_arg(ap, int);

6

Integer to String Conversion

This it the algorithm I use, there are other ways to do

it that don’t involve the backwards step (starting off by

dividing by 1 billion and dividing the divisor by 10 each

time).

• Repeatedly divide by 10.

• Digit is the remainder. Repeat until quotient 0.

• Make sure handle 0 case.

• Convert each digit to ASCII by adding 48 (’0’)

• Why does the number end up backwards?

7

Division by 10

• ARM1176 in Pi has no divide routine, why isn’t this a

problem?

We are on ARMv7/v8 which does, but for backwards

compatibility we are compiling to ARMv6.

• Generic x=y/z division is not possible without fancy

work (iterative subtraction? Newton approximation?)

• Dividing by a constant is easier

• C compiler cheats, for /10 it effectively multiplies by

1/10.

8

• Look at generated assembly, you’ll see it multiply by

0x66666667

• Why is it not a problem when dividing by 16?

• What does the C compiler do if you do divide by a

non-constant? Makes a call to C-library or gcc-library

divide routine, which we don’t link in.

• If on ARM 1176 you try to use division, C compiler will

try to call something like aeabi uidiv() which you

have to provide.

Can be fancy assembly, or just iterative subtraction

9

What are interrupts?

• A way to let hardware/software interrupt execution to

let the CPU know something important has happened.

• Notified immediately of something happening (as

opposed to polling, checking occasionally)

• Without interrupts processes can get stuck/greedy and

never let go of what they are doing.

• Do you need precise interrupts?

• Are interrupts good or bad?

◦ Can reduce latency... or make it worse (real-time, slow

10

handler)

◦ Can add overhead. On OoO need to flush entire

pipeline, then enter kernel. Slow slow slow.

◦ Some HPC or virtual turn off interrupts if possible.

◦ Linux will avoid network interrupts when busy, or timer

interrupts if trying to sleep.

11

What generates interrupts?

• What types of hardware generate interrupts?

Keyboard, timers, Network, Disk I/O, serial etc.

• Some can be critical. Not empty UART FIFO fast

enough can drop data on floor.

• What is most frequent interrupt on typical OS? Timer

interrupt. regular timer. What is used for?

◦ Context switching

◦ Timekeeping, time accounting

12

Typical Interrupts

• Tell pointless 6502/Mockingboard example

• Set up interrupt source (Timer at 50Hz?)

• Install interrupt handler (usually vector at address that

jumps to your code to handle things)

◦ Handler should be fast, do whatever it needs to do (my

case, load up 14 registers with data) or even schedule

more work than later

◦ Disable interrupts if HW didn’t for us. Save/restore

any registers we’re going to change so when we return

13

no one notices

◦ Handler should ACK the interrupt (let hardware know

we handled things so it doesn’t retrigger as soon as we

exit)

• Enable interrupts (often need to do this two ways)

◦ On device (often a flag to set)

◦ Enable (unmask) interrupts on your CPU. Often a

processor flag.

14

Exceptions and Interrupts

• All architectures are different

• ARM does it a little differently from others.

• Note ARM32 on Cortex-A (this class) can be different

than Cortex-M (like the STM32 boards in 271)

• Possibly also different in ARM64

15

How to find out?

• ARM ARM for ARMv7 (2700+ pages)

• Look at Linux source code

• Look at Raspberry Pi Forums

• Note Pi4 has extra gic-400 interrupt controller you need

to enable

16

ARM has various Modes

• Modes:

• States

◦ ISA: ARM (normal), Thumb, Jazelle, ThumbEE

◦ Execution state (?)

◦ Security: Secure and Non-secure

• Privilege Level

◦ If secure: PL0 = user, PL1 = kernel

◦ If non-secure: PL0 = user, PL1 = kernel, PL2 =

hypervisor

17

ARM Modes

User PL0

FIQ PL1 fast interrupt

IRQ PL1 interrupt

SVC PL1 supervisor

MON PL1 monitor (only if security extensions)

ABT PL1 abort

UND PL1 undefined instruction

SYS PL1 system

HYP PL2 hypervisor (only if virtual extensions)

18

ARM Modes – continued

• User mode – unprivileged, restricted. Can only move to

higher level by exception.

• System Mode – like USER, but no restrictions on

memory/registers. Sort of like running as root, cannot

enter by exception.

• Supervisor – kernel mode. SVC (syscall) instructions

take you here. Also at reset (boot).

• Abort – called if a memory or prefetch causes an

exception

19

why is this useful? Virtual memory.

• Undefined – called when undefined instruction happens

why is this useful? Emulator?

• FIQ/IRQ – fast or normal interrupt

• HYP – hypervisor, for virtualization. A bit beyond this

class.

• Secure – secure mode, can lock things down.

20

ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Thumb

Processor
Mode

Condition

 Flags

2527 2324

Q IT J A

8

E

91015

IT

1619

GE[3..0]
RESERVED

RAZ/SBZP

Interrupt Masks

EndianThumb If/Then

Saturation

Jazelle Greater/Equal

SIMD

• Current Program Status Register

• Contains flags in addition to processor mode

• Six privileged modes

• One non-privileged: user (cannot write CPSR), now

APSR?

• Interrupts and exceptions automatically switch modes

21

ARM Interrupt Registers

User/Sys Hyp Fast IRQ Supervisor Undefined Abort Monitor

r0
r1
r2
r3
r4
r5
r6
r7

r8 r8 fiq
r9 r9 fiq
r10 r10 fiq
r11 r11 fiq
r12 r12 fiq

r13/sp SP hyp SP fiq SP irq SP svc SP und SP abt SP mon
r14/lr LR fiq LR irq LR svc LR und LR abt LR mon
r15/pc

apsr

cpsr spsr hyp spsr fiq spsr irq spsr svc spsr und spsr abt spsr mon
ELR hyp

22

Unlike other architectures, when switching modes the ARM

hardware will preserve the status register, PC and stack and

give you mode-specific versions (register bank switching).

Also for Fast Interrupts r8-r12 are saved as well, allowing

fast handlers that do not have to save registers to the

stack.

23

ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table

24

