ECE 531/598 — Advanced Operating

Systems
Lecture 8

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

21 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

e Homework #3 Due Friday
Notes on the USB-serial situation
Two drivers for MacOS /Windows
Modern OS device-drivers, code signing, etc, s

complicated

e Homework #4 will be posted, still working on Pi4
support

(Review) ARM CPSR Register

3130 29 28 27 25 24 23 19 16 15 10 9 8 7 6 5 4 0
RESERVED

NfZ |C|lV|Q IT J RAZ/SBZP GE[3..0] IT E(A|I|F|T Mode

Condition \ Jazelle Greater/Equal Thumb If/Then Endian ~— f Processor

Flags Saturation SIMD Interrupt Masks Thumb Mode

e Current Program Status Register

(Review) ARM Interrupt Handling

e ARM core saves CPSR to the proper SPSR

e ARM core saves PC to the banked LR (possibly with an
offset)

e ARM core sets CPSR to exception mode (disables
interrupts)

e ARM core jumps to appropriate offset in vector table

Vector Table

Type Type | Offset | LR | Priority
Reset SVC | 0x0 — 1
Undefined Instruction | UND | 0x04 | Ir-4/2 0
Software Interrupt | SVC | 0x08 Ir 6
Prefetch Abort ABT | Ox0Oc | Ir-4 5
Data Abort ABT | O0x10 | Ir-8 2
UNUSED — Ox14 — —
IRQ IRQ | 0x18 | Ir-4 4
FIQ FIQ | Oxlc | Ir-4 3

e See ARM ARM ARMv7 documentation for details

e NOTE: contains a 4-byte instruction, not an address

e Location defaults to 0x000000
if SCTL.V is 1 “high-vector” 0xffff0000

o If security mode implemented more complex, separate
vectors for secure/nonsecure, and on nonsecure the
SCTL.V lets you set it anywhere via VBAR

e Interrupts: IRQ = general purpose hardware,
FIQ = fast interrupt for really fast response (only 1),

SWI = syscalls, talk to OS
e FIQ mode auto-saves r8-r12.

-y 5

Complications

e What about thumb or endian mode when call into
interrupt? Depends on flags in SCTLR register

e Stack pointer changes when handle interrupt (why?)

e Need to set that up in advance, before interrupts enabled

e Why does kernel have own stack pointer? Why not use
the user stack? Does the user stack pointer always have
to be valid?

Ways to return from IRQ

e Regular function return not enough, need to change
mode and adjust LR

e subs pc,lr,#4
Sneakily branches and gets the right status register
(special case when S in SUBS and PC is destination)

e sub rl14d,r14,#4

movs pc,lr (or rfe)
e Another stores Ir and other things to stack, then restores

-y -

sub 1lr,1r,#4
stmbd sp!,{r0-r12,1r}

1dmfd sp!,{r0-ri12,pc}”
The caret means to load cpsr from spsr
Exclamation point means to update sp after popping.

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with
an attribute. Automatically restores to right address.

void function () attribute__ ((interrupt ("IRQ")));

/* Can be IRQ, FIQ, SWI, ABORT and UNDEF x*/

void __attribute__((interrupt ("UNDEF"))) undefined_instruction_vector (void) {

while (1) {
/* Do Nothing */
+

Getting Interrupt to Happen

e Initialize (set up vectors and stacks)
e Enable Interrupt at Pi Level
e Enable Interrupt at Device Level

e Enable Global interrupts at ARM Level

10

Raspberry Pi Interrupts

e See Section 7 of BCM2835 doc (though it's not well
written)
e Up to 64 possible, but only subset available to ARM
chip (rest belong to GPU)
e MMIO Registers used to configure:
o Basic pending: 32-bit field with most common IRQ
sources
o Full pending: two 32-bit registers a bit for each IRQ
source and whether triggered

/Y 11

o FIQ register: can pick which one is FIQ
o Enable register: to set which interrupts are enabled
o Disable register
e You also have to enable interrupts on the device too
e On Pi4 need to enable gic-400 interrupt controller too

-y 12

Initializing

e How do we get the vectors to address 0x07
Copy it there after the fact. Hard part is if we want the
routines to be C code.

e Clever, have the reset vector point to start of code, so
you can have the reset vector of beginning of code and
it will jJump to the right location.

e 1dr does a PC-relative load, so as long as we copy the
vectors at the same offset will work

e Leave at entry point, and first one is reset, so at boot

-y 13

we jump to reset

_start:

ldr pc, reset_addr

ldr pc, undefined_addr

ldr pc, software_interrupt_addr

ldr pc, prefetch_abort_addr

ldr pc, data_abort_addr

ldr pc, unused_addr

ldr pc, interrupt_addr

ldr pc, fast_interrupt_addr
reset_addr: .word
undefined_addr: .word
software_interrupt_addr: .word
prefetch_abort_addr: .word
data_abort_addr: .word
unused_addr: .word
interrupt_addr: .word
fast_interrupt_addr: .word
_start:
reset:

reset
undefined_instruction
software_interrupt
prefetch_abort
data_abort

reset

interrupt
fast_interrupt

14

ldr r3,
mov
ldmia
stmia
ldmia
stmia

=_start

r4d, #0x0000
r3!',{r5, r6,
rda!' ,{r5, r6,
r3!,{r5, r6,
r4! ,{r5, r6,

r7,
r7,
r7,
r7,

r8,
r8,
r8,
r8,

r9,
r9,
r9,
r9,

rl0,
r10,
rl10,
rio0,

rii1,
rii1,
riil,
ril,

ri2}
ri2}
ri2}
ri2}

15

Setting up the Stacks

e Need chunk of memory for each stack

e Temporarily switch to mode, then set the stack pointer

e You can manually (without getting an interrupt) set
the CPSR value with a msr instruction (move to status
register)

e We start in SVC mode (Well, on pi2-+newer HYP mode)
but we can get to a mode where we can change CPSR

/Y 16

GPU

mirrored with

different caching
rules?

Peripherals

RAM Reserved for
GPU

Device Tree

Unused RAM

Our Operating
System

System Stack

IRQ Stack

ATAGs

IRQ Vectors

Pi2/Pi3 Memory Map

Oxffff ffff (4GB)

0x4000 0000 (1GB)

0x3f00 0000 (1GB-16MB)

256MB?

0x2f00 0000
0x2eff b500

0x0000 8000 (32k)
0x0000 4000 (16k)

0x0000 0100 (256)
0x0000 0000

17

Setting up the Stacks

/* Set up the Interrupt Mode Stack * /
/* First switch to interrupt mode, then update stack pointer x*/
/* cpsr_c means just change the config (mode) registers */

mov r3, #(CPSR_MODE_IRQ | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISABLE)
msr cpsr_c, r3
mov sp, #0x4000

/* Switch back to supervisor mode */
mov r3, #(CPSR_MODE_SVC | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISABLE)
msr cpsr_c, r3

/Y 18

Clearing the Interrupt Status Bit

/* or use the "cpsid i" instruction? */

_enable_interrupts:

mrs r0, cpsr

bic rO0O, rO0, #0x80 ; bit clear
msr cpsr_c, r0

mov pc, 1r

Timer interrupt

e Most OSes have some sort of internal timer keeping
things going

e Tracks time of day, triggers scheduler (for context
switching), uptime, time accounting

o |deally triggered as a regular interrupt

-y 20

Timer interrupt — Linux

e Traditionally 100Hz, these days 250Hz?
o Too slow and the delay Iin context switching s
noticeable
o Too fast and the overhead from each interrupt adds
up (have to stop CPU, save/restore state, etc)
e Ancient Linux/UNIX has time value updated every 1s
since Jan 1st 1970. On 32-bit machines will overflow in

Jan 2038
e Interrupts can waste power, especially if machine is

-y o1

mostly idle/sleeping
Linux these days has ways to run without timer-ticks

rivia, timer tick on Linux called a jiffie

22

Timer interrupt — Other Operating Systems

e DOS = 18.2Hz
e \\Windows = 64Hz

-y 23

Configuring a Timer

e Section 14 of BCM2835 Peripheral manual.

e Similar, but not exactly the same, as an ARM SP804

e There are also the system timers (4 timers described in
Section 12).

e Note that the timer we use is based on the APB clock
which ticks at 250MHz

e Limitations: it scales with the system clock, so frequency
might change

e Important registers

-y 24

o TIMER_LOAD: set a value and it will count down on
each tick and give interrupt when zero. Automatically
re-loaded after interrupt.

o TIMER_CONTROL: start/stop, interrupts on/off,
scaling

o TIMER_RELOAD: queue a different value to be loaded
into TIMER_LOAD automatically when current hits
Zero

o TIMER_IRQ_CLEAR: clears the interrupt

o TIMER_PRE_DIVIDE: another divider, as original

design was for 1MHz clock

-y 25

/* Timer is based on the APB bus clock which is 250MHz on Rasp-Pi */
int timer_init(void) {
uint32_t old;

/* Disable the clock before changing config */
0ld=bcm2835_read (TIMER_CONTROL) ;
01d&="(TIMER_CONTROL_ENABLE | TIMER_CONTROL_INT_ENABLE) ;
bcm2835_write (TIMER_CONTROL ,0ld);

/* First we scale this down to 1MHz using the pre-divider x/
/* We want to /250. The pre-divider adds one, so 249 = 0xf9 x*/
bcm2835_write (TIMER_PREDIVIDER ,0xf9);

/* We enable the /256 prescalar */
/* So final frequency = 1MHz/256/61 = 64.04 Hz */

/* The value is loaded into TIMER_LOAD and then it counts down *x/
/* and interrupts once it hits zero. */

/* Then this value is automatically reloaded and restarted =/

bcm2835_write (TIMER_LOAD ,61);

/Y 26

/* Enable the timer in 32-bit mode, enable interrupts */
/* And pre-scale the clock down by 256 */
bcm2835_write (TIMER_CONTROL ,
TIMER_CONTROL_32BIT | /* In manual 23bit typo */
TIMER_CONTROL_ENABLE |
TIMER_CONTROL_INT_ENABLE |
TIMER_CONTROL_PRESCALE_256);

/* Enable timer interrupt */
bcm2835_write (IRQ_ENABLE_BASIC_IRQ ,IRQ_ENABLE_BASIC_IRQ_ARM_TIMER);

return O;

27

Sample Interrupt Handler

e CPU disables interrupts, switches CPSR to correct mode

e Save registers (no need to save SPSR unless nested)

e Interrupt handler checks and sees which interrupt was
triggered (in a register)

e Interrupt Status Routine (ISR) called which services the
routine and then acknowledges interrupt

e Handler restores context, returns

e CPU restores execution

-y 28

void

Sample Interrupt Handler

__attribute__((interrupt ("IRQ"))) interrupt_vector (void) {
static int 1lit = 0;
int which;

/* Check to see what interrupt we had */
which=bcm2835_read (IRQ_BASIC_PENDING) ;
if (which&Ox1) {

/* Clear the Timer interrupt */
bcm2835_write (TIMER_IRQ_CLEAR ,0x1);

/* Flip the LED x/
if(1it) { led_off(); 1it=0; }
else {led_on(); 1lit=1; }

29

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with
an attribute. Automatically restores to right address.

void function () attribute__ ((interrupt ("IRQ")));

/* Can be IRQ, FIQ, SWI, ABORT and UNDEF x*/

void __attribute__((interrupt ("UNDEF"))) undefined_instruction_vector (void) {

while (1) {
/* Do Nothing */

+

Enabling Interrupts in C

static inline uint32_t get_CPSR(void) {
uint32_t temp;
asm volatile ("mrs.%0,CPSR":"=r" (temp):) ;
return temp;

static inline void set_CPSR(uint32_t new_cpsr) {
asm volatile ("msr CPSR_cxsf ,%0"::"r"(new_cpsr));

by

/* enable interrupts */

static inline void enable_interrupts(void)({
uint32_t temp;
temp = get_CPSR();
set _CPSR(temp & ~0x80);

31

Writing a Command Parser

e Read in values one character at a time intro string buffer.

e Read until Enter (slash r)

e Be sure to NUL terminate! Also be sure to not overflow
buffer!

e How to parse? strtok()? stcmp()?
Who provides these string routines?

e Simple way to do things is to manually check, like
if ((buffer[0]==’1’) && (buffer[l1]==’s’)) somet

-y 32

HW#4 Note

e See the next lecture for some more info on HW+#:4

33

