
ECE 531/598 – Advanced Operating
Systems
Lecture 8

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #3 Due Friday

Notes on the USB-serial situation

Two drivers for MacOS/Windows

Modern OS device-drivers, code signing, etc, is

complicated

• Homework #4 will be posted, still working on Pi4

support

1

(Review) ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Thumb

Processor
Mode

Condition

 Flags

2527 2324

Q IT J A

8

E

91015

IT

1619

GE[3..0]
RESERVED

RAZ/SBZP

Interrupt Masks

EndianThumb If/Then

Saturation

Jazelle Greater/Equal

SIMD

• Current Program Status Register

2

(Review) ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table

3

Vector Table

Type Type Offset LR Priority

Reset SVC 0x0 – 1

Undefined Instruction UND 0x04 lr-4/2 6

Software Interrupt SVC 0x08 lr 6

Prefetch Abort ABT 0x0c lr-4 5

Data Abort ABT 0x10 lr-8 2

UNUSED – 0x14 – –

IRQ IRQ 0x18 lr-4 4

FIQ FIQ 0x1c lr-4 3

4

• See ARM ARM ARMv7 documentation for details

• NOTE: contains a 4-byte instruction, not an address

• Location defaults to 0x000000

if SCTL.V is 1 “high-vector” 0xffff0000

• If security mode implemented more complex, separate

vectors for secure/nonsecure, and on nonsecure the

SCTL.V lets you set it anywhere via VBAR

• Interrupts: IRQ = general purpose hardware,

FIQ = fast interrupt for really fast response (only 1),

SWI = syscalls, talk to OS

• FIQ mode auto-saves r8-r12.

5

Complications

• What about thumb or endian mode when call into

interrupt? Depends on flags in SCTLR register

• Stack pointer changes when handle interrupt (why?)

• Need to set that up in advance, before interrupts enabled

• Why does kernel have own stack pointer? Why not use

the user stack? Does the user stack pointer always have

to be valid?

6

Ways to return from IRQ

• Regular function return not enough, need to change

mode and adjust LR

• subs pc,lr,#4

Sneakily branches and gets the right status register

(special case when S in SUBS and PC is destination)

• sub r14,r14,#4

. . .

movs pc,lr (or rfe)

• Another stores lr and other things to stack, then restores

7

sub lr,lr,#4

stmbd sp!,{r0-r12,lr}
. . .

ldmfd sp!,{r0-r12,pc}^
The caret means to load cpsr from spsr

Exclamation point means to update sp after popping.

8

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with

an attribute. Automatically restores to right address.
void function () __attribute__ ((interrupt ("IRQ")));

/* Can be IRQ , FIQ , SWI , ABORT and UNDEF */

void __attribute__ ((interrupt("UNDEF"))) undefined_instruction_vector(void) {

while (1) {

/* Do Nothing */

}

}

9

Getting Interrupt to Happen

• Initialize (set up vectors and stacks)

• Enable Interrupt at Pi Level

• Enable Interrupt at Device Level

• Enable Global interrupts at ARM Level

10

Raspberry Pi Interrupts

• See Section 7 of BCM2835 doc (though it’s not well

written)

• Up to 64 possible, but only subset available to ARM

chip (rest belong to GPU)

• MMIO Registers used to configure:

◦ Basic pending: 32-bit field with most common IRQ

sources

◦ Full pending: two 32-bit registers a bit for each IRQ

source and whether triggered

11

◦ FIQ register: can pick which one is FIQ

◦ Enable register: to set which interrupts are enabled

◦ Disable register

• You also have to enable interrupts on the device too

• On Pi4 need to enable gic-400 interrupt controller too

12

Initializing

• How do we get the vectors to address 0x0?

Copy it there after the fact. Hard part is if we want the

routines to be C code.

• Clever, have the reset vector point to start of code, so

you can have the reset vector of beginning of code and

it will jump to the right location.

• ldr does a PC-relative load, so as long as we copy the

vectors at the same offset will work

• Leave at entry point, and first one is reset, so at boot

13

we jump to reset

_start:

ldr pc , reset_addr

ldr pc , undefined_addr

ldr pc , software_interrupt_addr

ldr pc , prefetch_abort_addr

ldr pc , data_abort_addr

ldr pc , unused_addr

ldr pc , interrupt_addr

ldr pc , fast_interrupt_addr

reset_addr: .word reset

undefined_addr: .word undefined_instruction

software_interrupt_addr: .word software_interrupt

prefetch_abort_addr: .word prefetch_abort

data_abort_addr: .word data_abort

unused_addr: .word reset

interrupt_addr: .word interrupt

fast_interrupt_addr: .word fast_interrupt

_start:

...

reset:

14

ldr r3 , =_start

mov r4 , #0 x0000

ldmia r3!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

stmia r4!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

ldmia r3!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

stmia r4!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

15

Setting up the Stacks

• Need chunk of memory for each stack

• Temporarily switch to mode, then set the stack pointer

• You can manually (without getting an interrupt) set

the CPSR value with a msr instruction (move to status

register)

• We start in SVC mode (Well, on pi2+newer HYP mode)

but we can get to a mode where we can change CPSR

16

Pi2/Pi3 Memory Map
0xffff ffff

0x0000 0000

0x0000 0100

0x0000 8000
System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(32k)

(256)

(16k)0x0000 4000

0x4000 0000 (1GB)

GPU

mirrored with
different caching

rules

0x3f00 0000 (1GB−16MB)

Peripherals

Our Operating
System

Unused RAM

GPU
RAM Reserved for

?

0x2f00 0000

256MB?

0x2eff b500
Device Tree

17

Setting up the Stacks
/* Set up the Interrupt Mode Stack */

/* First switch to interrupt mode , then update stack pointer */

/* cpsr_c means just change the config (mode) registers */

mov r3 , #(CPSR_MODE_IRQ | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISABLE)

msr cpsr_c , r3

mov sp , #0 x4000

/* Switch back to supervisor mode */

mov r3 , #(CPSR_MODE_SVC | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISABLE)

msr cpsr_c , r3

18

Clearing the Interrupt Status Bit

/* or use the "cpsid i" instruction? */

_enable_interrupts:

mrs r0 , cpsr

bic r0 , r0 , #0x80 ; bit clear

msr cpsr_c , r0

mov pc , lr

19

Timer interrupt

• Most OSes have some sort of internal timer keeping

things going

• Tracks time of day, triggers scheduler (for context

switching), uptime, time accounting

• Ideally triggered as a regular interrupt

20

Timer interrupt – Linux

• Traditionally 100Hz, these days 250Hz?

◦ Too slow and the delay in context switching is

noticeable

◦ Too fast and the overhead from each interrupt adds

up (have to stop CPU, save/restore state, etc)

• Ancient Linux/UNIX has time value updated every 1s

since Jan 1st 1970. On 32-bit machines will overflow in

Jan 2038

• Interrupts can waste power, especially if machine is

21

mostly idle/sleeping

Linux these days has ways to run without timer-ticks

• Trivia, timer tick on Linux called a jiffie

22

Timer interrupt – Other Operating Systems

• DOS = 18.2Hz

• Windows = 64Hz

23

Configuring a Timer

• Section 14 of BCM2835 Peripheral manual.

• Similar, but not exactly the same, as an ARM SP804

• There are also the system timers (4 timers described in

Section 12).

• Note that the timer we use is based on the APB clock

which ticks at 250MHz

• Limitations: it scales with the system clock, so frequency

might change

• Important registers

24

◦ TIMER LOAD: set a value and it will count down on

each tick and give interrupt when zero. Automatically

re-loaded after interrupt.

◦ TIMER CONTROL: start/stop, interrupts on/off,

scaling

◦ TIMER RELOAD: queue a different value to be loaded

into TIMER LOAD automatically when current hits

zero

◦ TIMER IRQ CLEAR: clears the interrupt

◦ TIMER PRE DIVIDE: another divider, as original

design was for 1MHz clock

25

/* Timer is based on the APB bus clock which is 250 MHz on Rasp -Pi */

int timer_init(void) {

uint32_t old;

/* Disable the clock before changing config */

old=bcm2835_read(TIMER_CONTROL);

old &=~(TIMER_CONTROL_ENABLE|TIMER_CONTROL_INT_ENABLE);

bcm2835_write(TIMER_CONTROL ,old);

/* First we scale this down to 1MHz using the pre -divider */

/* We want to /250. The pre -divider adds one , so 249 = 0xf9 */

bcm2835_write(TIMER_PREDIVIDER ,0xf9);

/* We enable the /256 prescalar */

/* So final frequency = 1MHz /256/61 = 64.04 Hz */

/* The value is loaded into TIMER_LOAD and then it counts down */

/* and interrupts once it hits zero. */

/* Then this value is automatically reloaded and restarted */

bcm2835_write(TIMER_LOAD ,61);

26

/* Enable the timer in 32-bit mode , enable interrupts */

/* And pre -scale the clock down by 256 */

bcm2835_write(TIMER_CONTROL ,

TIMER_CONTROL_32BIT | /* In manual 23bit typo */

TIMER_CONTROL_ENABLE |

TIMER_CONTROL_INT_ENABLE |

TIMER_CONTROL_PRESCALE_256);

/* Enable timer interrupt */

bcm2835_write(IRQ_ENABLE_BASIC_IRQ ,IRQ_ENABLE_BASIC_IRQ_ARM_TIMER);

return 0;

}

27

Sample Interrupt Handler

• CPU disables interrupts, switches CPSR to correct mode

• Save registers (no need to save SPSR unless nested)

• Interrupt handler checks and sees which interrupt was

triggered (in a register)

• Interrupt Status Routine (ISR) called which services the

routine and then acknowledges interrupt

• Handler restores context, returns

• CPU restores execution

28

Sample Interrupt Handler
void __attribute__ ((interrupt("IRQ"))) interrupt_vector(void) {

static int lit = 0;

int which;

/* Check to see what interrupt we had */

which=bcm2835_read(IRQ_BASIC_PENDING);

if (which &0x1) {

/* Clear the Timer interrupt */

bcm2835_write(TIMER_IRQ_CLEAR ,0x1);

/* Flip the LED */

if(lit) { led_off (); lit =0; }

else {led_on (); lit =1; }

}

}

29

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with

an attribute. Automatically restores to right address.
void function () __attribute__ ((interrupt ("IRQ")));

/* Can be IRQ , FIQ , SWI , ABORT and UNDEF */

void __attribute__ ((interrupt("UNDEF"))) undefined_instruction_vector(void) {

while (1) {

/* Do Nothing */

}

}

30

Enabling Interrupts in C
static inline uint32_t get_CPSR(void) {

uint32_t temp;

asm volatile ("mrs␣%0,CPSR":"=r" (temp):) ;

return temp;

}

static inline void set_CPSR(uint32_t new_cpsr) {

asm volatile ("msr␣CPSR_cxsf ,%0"::"r"(new_cpsr));

}

/* enable interrupts */

static inline void enable_interrupts(void){

uint32_t temp;

temp = get_CPSR ();

set_CPSR(temp & ~0x80);

}

31

Writing a Command Parser

• Read in values one character at a time intro string buffer.

• Read until Enter (slash r)

• Be sure to NUL terminate! Also be sure to not overflow

buffer!

• How to parse? strtok()? stcmp()?

Who provides these string routines?

• Simple way to do things is to manually check, like

if ((buffer[0]==’l’) && (buffer[1]==’s’)) something;

32

HW#4 Note

• See the next lecture for some more info on HW#4

33

