ECE 531/598 — Advanced Operating

Systems
Lecture 9

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

26 September 2023



Announcements

e Homework #4 was posted

e Issues getting homework posted, mostly due to getting
Raspberry Pi4 Interrupt support working

e Do we really need timer interrupts?
Actually hard to make a single-core multitasking OS
without a regular timer interrupt. Why it's hard to make
an OS on the Apple Il (some people made cards for just
this purpose)

-y 1



More notes for HW#4



Accessing MMIO registers

e For the BCM2835 peripherals, use bcm2835_read () and
bcm2835_write () to do MMIO access
These adjust for the differing location of the MMIO
regions on different Pis

e Don't use the mmio_read()/write() routines unless
you have to (I renamed them to make this hard to do
accidentally). The only code that uses them is the new
gic-400 irq controller code on Pi4 because it lives In a
different mmio region separate from the peripheral 10

-y 3



Changes for HW#4

e In case you want to re-use your HW#3 code
e Autodetects Pi model
o sets up io_base for you
o sets up various pi4 things if it sees you have one
o This required adding a lot of code, including device
tree support
e uart_write() will automatically insert the carriage return
(\r) for you if it sees a linefeed



HW#4 — Device Tree

e The "new’ way of providing hardware info to the kernel
for an ARM machine

e Replaces ATAGS

e Microsoft is pushing ACPI support instead :(

e Parser isn't too horrible, it's mostly a bunch of key/value
pairs

e There's a long complex spec, it's based on powerpc stuff
from a while ago

e For now we just grab the device type but in future we

-y 5



could do things like actually grab the io_base directly
from it



HW#4 — include and quotes

® What |S the dlfference between #include <string.h> d nd

#include "string.h"

e The first looks at the system includes

e The second looks in your local directory (or what you
specify with —=I on the command line)



HW=+#4 — String manipulation

e Most C-based OSes quickly obtain string manipulation
functions

e strncmp(), strlen(), strncpy(), memcpy(), memset(),
memcpy()

e What's the different between strncpy and memcpy?
e How optimized do these routines need to be?

e memcpy() is often short blast of C

-y g



for(i=0;i<n;i++) { *d=xs; d++; s++;}

but it can be optimized to death.

e memcpu() / memmove() difference? Why it's there,
hazard when you don't use it right? (memmove the areas
can overlap) (what happens if you copy backwards)



HW#4 — Writing a shell

e \What is a shell, or monitor routine?
e How can you parse a command line?

e Read values into a buffer. When enter pressed, check
for a command. strcmp()? By hand? strtok() if fancy?

e Do whatever the command indicates, then reset buffer
pointer.

e Print an error if unknown command.

/Y 10



HW#4 — LED routines

e | added LED routines in led.c along with gpio.c

e This abstracts the code away, so it should work on any
kind of Pi transparently (though very slightly slower than
direct coding it)

e Good for you, but also makes grading easier for me.

-y 11



Interrupt Roundup

Any questions on interrupts?

12



Interrupts On Raspberry Pis

e TODO: verify this info and make diagrams

e On Original Pil, one interrupt controller. Peripheral
interrupts fed into interrupt controller, which generated
the IRQ/FIQ lines to the single CPU

e On Pi2/Pi3 multicore. Each Core has own “local”
interrupt controller? Each core has own source of
interrupts (PMU, timer) that get fed into controller
along with peripheral interrupts, which then generate

IRQ/FIQ?

-y 13



e On Pi4 same as Pi2/Pi3 but a GIC-400 global interrupt
controller is added. The peripheral interrupts feed into
both the legacy and GIC-400. Things like ARM timer
can be handled either by legacy (have to enable that
input on GIC-400) or also handled directly by the IRQ
feeding into GIC




Timers On Raspberry Pis

e ARM sp084 timer
o Available all models BCM2835 Chapter 14, BCM2711
Chapter 12
o Based on 250MHz bus? Different on some models?
o Simple countdown with auto-reload timer, and
Interrupts
o The timer's location Iin the iInterrupt pending map
changed in the Pi4
e System Timer

-y 15



o Available all models? BCM2835 Chapter 12,
BCM2711 Chapter 10

o Single free-running 64-bit counter

o 4 32-bit compare registers that can generate interrupt
when matches the bottom 64 bits

o Based on which clock source?

e Local Timer

o Only pi2 and newer?
BCM2711 Chapter 6, BCM2836

o per-core’?

o which clock?

/Y 16



o Scaled on Cortex A77?
o Note, access to these is not via the peripheral area but
In the special local cpu area

-y 17



Interrupts Schemes

e More info on nested interrupts

e More info on interrupt priority

18



Interrupts on Linux

e Can look in /proc/interrupts

e Latency matters. Old days had problems where you'd
lose serial interrupts (small FIFOs) if your disk drive took
too long, etc.

e Cannot do anything that might block in an interrupt.
Can you do 1/O? Can you do a printk?

e Top Half / Bottom Half
Have interrupt routine be bare minimum short. ACK

-y 19



interrupt, handle super pressing thing (copy data out of
FIFO) Then tell the kernel to handle the rest later.

So you might have a tasklet/kernel thread that runs
occasionally (and is fully interruptible) that will do the
rest.

For example, network packet comes in, important to read
the packet and ACK interrupt. Put it in queue, then later
the code that does longer latency stuff (decodes packet,
does ethernet or TCP/IP stuff, then finally copies the
data to the code waiting)

e Timer interrupt. How often? 100Hz originally. Up to

-y 20



1000Hz (why?) now configurable, often at 250Hz.

21



Userspace

e Why use userspace (why not everything in kernel like
DOS?)
Slower, but has some protections from bad
programs/security

e Can't access all of CPSR register
Can't turn off interrupts
Can't switch to privileged modes

e If virtual memory enabled, can’t access protected/kernel

-y 2



memory

e Can you still access MMIO?

23



Entering User Mode

mov r0, #0x10 // set up user bits for CPSR

msr SPSR, rO // put in the saved status register

ldr 1r, =first // point link register to entry point of our user code
movs pc, lr // switch modes

24



System Calls

e If we are running in user mode, how can we get back
into the kernel?

e Interrupts! Timer interrupt is often used to periodically
switch to the kernel and it can then do any accumulated
tasks.

e How can we manually call into the kernel when we need
to?

e System calls!

e Can watch system calls with strace command on Linux

-y 25



ARM System Calls

e On ARM a SWI instruction (sometimes is shown as a
SVC instruction) causes a software interrupt.

e This calls into the kernel SWI Interrupt handler (which
we will have to set up)

e Based on the state of the registers at the time of the
SWI, the kernel will do something useful.

/Y 26



Linux ARM System Call Interface

e EABI: Arguments in rO through r6. System call number
In r7.
swi O
Return value in r0

e OABI: Arguments in r0 through r6. swi
SYSBASE+SYSCALLNUM. Why bad? No way to get swi
value except parsing back in instruction stream.



SWI Interrupt Handler

__attribute__((interrupt ("SVC"))) swi_handler(
uint32_t r0, uint32_t rl, uint32_t r2, uint32_t r3) {
register long r7 asm ("r7");

uint32_t

printk("Syscall,%d\n",r7);

/* Copy result into place of r0O on return stack */
asm volatile("str,%[result],[sp,#0]\n"
/* output x*/
[result] "r" (result) /* input */
1) /* clobber x*/

return result;

28



Linux System Call Results

e Result is a single value (plus contents of structures
hointed to)

e How can you indicate error?

e On Linux, values between -4096 and -1 are treated as
errors. Usually -1 is returned and the negative value is
made positive and stuck in errno.

e What are the limitations of this? (what if -4000 is a
valid return?)

-y 29



syscalls on non-ARM systems

e It's up to the OS and architecture
e x86 it's int 0x80 on 32-bit and syscall on 64-bit

e Some OSes pass paramaters on stack, Linux it's usually
in registers for speed.

/Y 30



Application Binary Interface

What is an ABI and why is it necessary?

31



Linux GNU EABI

e Procedure Call Standard for the ARM architecture

e ABI, agreed on way to interface with system.

e Arguments to registers. rO through r3.

e Return value in r0.

e How to return float, double, pointers, 64-bit values?
(There's a new ABI on ARM, hf (hard floating point)
that's mostly about how to pass floating point values
around)

e How to pass the above?

-y 3



e What if more than 4 arguments? (stack)

e Is there a stack, how aligned?

e Structs, bitfields, endianess?

e Callee vs Caller saved registers? (A subroutine must
preserve the contents of the registers r4-r8, r10, r11 and
SP)

e Frame Pointer?

/Y 33



ABI| Purpose

e An ABI is used so that code written by different groups
knows how to communicate (code to c-library, c-library
to kernel, etc)

e If you are writing your own OS from scratch can write
own ABI, but then not compatible with existing code

e Writing in assembly you can ignore the ABI for speed,
but only if you do not call out to anyone else’s code

-y 34



static inline uint32_t syscall3(int argo,

uint32_t result;

asm volatile (

return result;

Calling a Syscall

int argl, int

"mov,r0,,%hlarg0]\n"
"movyrl, %hlargli]l\n"
"mov,r2,,%larg2]\n"
"mov,r7,,%[which]\n"

"swi_ O\n"
"mov,%[result], _ rO\n"
[result] "=r" (result)
[arg0] "r" (arg0),

[argl] "r" (argl),

[arg2] "r" (arg2),
[which] "r" (which)

"ro", "ri", "r2", "r7" );

arg2,

int which) {

35



