
ECE 531 – Advanced Operating
Systems

Lecture 21

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 November 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #7 will be posted

• Project Progress Report Due (extended until Monday

the 20th)

• Midterm after Thanksgiving, tentatively moved to

Thursday November 30th

1

Notes on Homeworks

• They’ve been delayed due to a few problems

◦ elf2bflt was broken (since fixed)

◦ Pi4 interrupt support (since fixed)

◦ Mysterious problem on Pi4 with icache enabled (still

working on)

◦ Pi4 mailbox/graphics support also broken

• I will post some updated code that people can use for

projects

2

Graphics Interface History

• Teletypes

• Vector Displays

• CRTs

• LCD displays

3

Video Display Technology

• Atari 2600 – Racing the Beam

4k ROM, 128 bytes RAM, 40-pixel (5 byte) framebuffer

3 sprites

all calculation done during the retraces

• SNES Tile/Sprite Based

RAM getting cheap enough can have framebuffers, but

bandwidth still not that great.

Use tiles, that let you split the display into tiles, with

each large tile specified by a single byte.

4

Video Adapters – Framebuffers

• Just an array of bytes that get displayed on the screen.

• Bits per pixel

◦ 1 – monochrome

◦ 4 – 16 colors

◦ 8 – 256 colors (usually palette)

◦ 15 – rgb 555

◦ 16 – rgb 565 “true color”

◦ 24 – rgb 888

◦ 32 – rgba

5

• Can be large: 1024x768x24bpp = 2.4MB, to update at

60Hz = 141MB/s

• Bit-planes

• Palette

6

VGA Display example

• VGA text

• Memory mapped, IO ports

• Mode setting

• VESA BIOS

• “Mode X”

• Bitplanes

• Colors

• Loadable fonts

7

Video Adapters – GPUs

• Draw lots of triangles, really fast

• Can divide screen into small sections, and calculate

massively parallel.

• OpenGL/Direct3d

• Triangles / Textures / Z-buffers

• Shaders

• Can make a card with no framebuffer? Text just written

to texture and scaled to fill screen?

8

Modern GPUs

• Massively Parallel

• Instead of fixed pipelines, programmable shaders

• 3D shaders

◦ Vertex shader, called on each vertex, can calc texture,

convert to 2D, change position

◦ Geometry shader, can make new vertices

◦ Tesselation – makes meshes

◦ Ray Tracing

• 2D shaders

9

◦ Pixel (Fragment) Shaders - called on each pixel, can

do things based on co-ords, nearby values

• Compute

◦ GPGPU – general purpose code can be offloaded to

GPU

10

VideoCore GPUs

• In Pi. Old ones IV, newer VI?

• OpenGL ES 2.0 V3D

• Output to HDMI, DSI, DPI, composite

• In theory can do compute shader jobs, but no Linux

interface

• QPU – 16-way SIMD (suited for calculating quad (x4)

data

In theory can use mailbox to submit QPU jobs

• Can run general purpose code unlike some GPUs

11

On Pi runs ThreadX, full OS by itself

12

Programming VideoCore

• Broadcom eventually released enough info for a full

open-source Linux driver

• V3Dlib (?)

• videocoreiv on github, code to write baremetal simple

OS running only on GPU

13

Linux graphic interface

• originally, none. VGA Text only

X11 drove software directly.

• Attempt at GGI/KGI, Linus nixed it

• Framebuffer devices got in. Why? Well some machines

had no textmode without it

• Gradually the DRI interface (Direct Rendering Interface)

started providing

14

Abstractions needed for modern video cards

• DRI1/DRI2/DRI3

• DRM – event queueing?

• KMS – kernel mode setting

• GEM/TTM – memory allocation

• MESA3D – handles OpenGL translation

15

Higher Level

• X11 – client/server, network transparent

MIT, 1984

• Wayland – Compositing Manager is mandatory

Draw to an offscreen buffer, window manager copy to

screen

Can have 3d compositor, fancy effects

16

Even Higher

• Libraries like Qt, Gtk, (historically Motif)

• Desktops like KDE, GNOME, XFCE

17

Raspberry Pi Framebuffer

• Pi can do advanced 3D GPU graphics.

But it is complex, more than we need for a simple OS

• The GPU firmware does provide for a simple flat

framebuffer mode if you ask it nicely

18

Pi GPU interface

http://petewarden.com/2014/08/07/how-to-optimize-raspberry-pi-code-using-its-gpu/

https://github.com/raspberrypi/firmware/wiki/Mailboxes

19

http://petewarden.com/2014/08/07/how-to-optimize-raspberry-pi-code-using-its-gpu/
https://github.com/raspberrypi/firmware/wiki/Mailboxes

Raspberry Pi Mailbox Interface

• How the ARM CPU communicates with the GPU that

really run things

• Mailbox channels
MAILBOX POWER 0
MAILBOX FRAMEBUFFER 1
MAILBOX VIRT UART 2
MAILBOX VCHIQ 3
MAILBOX LED 4
MAILBOX BUTTONS 5
MAILBOX TOUCHSCREEN 6
MAILBOX PROPERTY TO VC 8
MAILBOX PROPERTY FROM VC 9

• Property tags contains a lot of the stuff we get from

devicetree

20

◦ Temperature

◦ Clocks

◦ DMA

◦ Graphics

21

Raspberry Pi Mailbox Interface

• Two mailboxes in MMIO space (0x3f00b880). As Pi,

always read/receive on Mailbox 0 and write/send on

Mailbox1
Mbox0 Offset Mbox1 Offset Size Name Description R/ W

0x00 0x20 4 Read/Write Get/Send Mail R/W
0x10 0x30 4 Poll/Peek Check mail R
0x14 0x34 4 Sender Sender info R
0x18 0x38 4 Status Infor R
0x1c 0x3c 4 Config Settings RW

• to send to a mailbox:

◦ sender waits until the Mailbox1 Status field has a 0 in

the MAIL FULL bit

◦ sender writes to Write such that the lowest 4 bits are

22

the channel to write to, and the upper 28 bits are the

message to write.

How can you make the address of the message have

the bottom 4 bits be zero? (align directives)

• To read a mailbox:

◦ receiver waits until the Mailbox0 Status field has a 0

in the MAIL EMPTY

◦ receiver reads from Read.

◦ receiver confirms the message is for the correct

mailbox, and tries again if not.

• Talk to GPU through this mailbox interface. Lots of

23

things set in it (the GPU is in control on Pi). Things

like power, clock enables, etc.

24

Raspberry Pi Framebuffer Interface

• You can send it an address to a piece of memory to use

as a framebuffer and it will draw it to the screen over

HDMI.
• struct frame_buffer_info_type {

int phys_x ,phys_y; /* IN: Physical Width / Height */

int virt_x ,virt_y; /* IN: Virtual Width / Height */

int pitch; /* OUT: bytes per row */

int depth; /* IN: bits per pixel */

int x,y; /* IN: offset to skip when copying fb */

int pointer; /* OUT: pointer to the framebuffer */

int size; /* OUT: size of the framebuffer */

};

• Write the address of FrameBufferInfo + 0xC0000000 to

mailbox 1 (C0000000 is a mirrored part of the address

25

space that is not cached)

Read the result from mailbox 1. If it is not zero, we

didn’t ask for a proper frame buffer.

GPU firmware returns a framebuffer you can write to.

Copy our images to the pointer, and they will appear on

screen!

26

Using a Framebuffer

• How big is it?

• Why might it not just be X*Y*(bpp/8) bytes big?

Alignment issues? Powers of two? Weird hardware

reasons?

• Things like R/G/B order, padding bits, bits grouped

together (on Apple II groups of 7 bytes), etc

• Otherwise it’s just an exercise is calculating start address

and then copying values

• How do you calculate colors?

27

Putting a Pixel

• Depends a bit on the graphics mode you request

• For simplicity, request 800x600x24-bit

• Get back pointer, size, pitch

• Each X row has B,G,R bytes repeated for each pixel (the

ordering changed at some point with a firmware release)

• To get to next row increment by pitch value (bytes per

row)

28

fb[(x*3)+(y*pitch)]=b

fb[(x*3)+(y*pitch)+1]=g

fb[(x*3)+(y*pitch)+2]=r

• pitch returned by the GPU. Normally it would just be

(maxy*bpp)/8, but it can vary depending on how the

hardware arranges the bits.

29

Drawing a Gradient

• Just draw a horizontal line, incrementing the color for

each line

30

Console Display

• Font / VGA Fonts

• console framebuffer. Color?

• scrolling

• backspace

• ANSI emulation

31

Fonts

• How do you convert an ASCII character to a pixel

pattern?

• Fonts!

• Fancy fonts have vectors, spacing info

• Can have full programming language to calculate this as

well as to help scale for different sizes

• We want something simpler, just a pure bitmap font

32

Bitmapped Font

• Each character an 8x8 (or 8x16, or similar) pattern

• unsigned char smiley [8]={

0x7e , /* ****** */

0x81 , /* * * */

0xa5 , /* * * * * */

0x81 , /* * * */

0xa5 , /* * * * * */

0x99 , /* * ** * */

0x81 , /* * * */

0x7e , /* ****** */

};

void put_smiley(int xoff , int yoff , int color) {

for(y=0;y<8;y++) {

for(x=0;x<8;x++) {

if (simley[y]&(1<<(7-x))) {

putpixel(color ,x+xoff ,y+yoff);

• 33

}

}

}

}

• Can find source of fonts online, VGA fonts. Just a binary

set of bitmapped characters indexed by ASCII code.

• Usually 8x16 though; the custom font used in the

homework is a hand-made 8x8 one

34

