
ECE 531 – Advanced Operating
Systems

Lecture 23

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 November 2023



Announcements

• ThreadX being released open source

• HW#7 was due (and will be discussed below)

• HW#8 posted (short, look at it before the midterm)

• Tentative project schedule sent out

1



Second Midterm

• Thursday November 30th

• Cumulative, but heavily concentrating on topics since

the 1st midterm

• Topics:

◦ Memory allocation

◦ Virtual Memory: what it’s good for, how two addresses

can have the same address

◦ Filesystems: Fat, ext4, others. Why use fat?

◦ Multi-core/Locking/Deadlock/IPC

2



◦ Maybe a brief graphics question

3



Project Presentations

• Aim for 8 minute presentation with 2 min for

questions/setup

• Can present with slides if you want

• Mostly just showing off your project idea and what you

accomplished.

• Topics to include

◦ Intro/Overview: what you did and why

◦ Brief Related Work: any similar projects, how your

project differs (it’s OK if it doesn’t)

4



◦ Hardware: describe any hardware used in the project

If it’s interfaced via built-in BCM2835 hardware briefly

describe that interface too.

◦ Software: describe the software you wrote and how it

ties into an operating system (is it a device driver? is

it userspace and talks via syscalls? Does it bypass the

OS? is it a proof-of-concept outside the OS?)

◦ Challenges: Describe any challenges you encountered

◦ Future Work: if you had more time, what else would

you do

◦ Demo: show off what you did, if possible

5



Project Writeup

• Described in the document

• Ideally IEEE format (this is grad course)

• Like a mini published paper. 6 pages or so is fine.

• Document on website describes which sections to include

6



HW#6 Review – Code

• Scheduling algorithm – round robin (it walks list, wraps

around on end, stops if we get back to original)

• Memory Algorithm – first fit

• Changing to next-fit, mostly involves static variable to

hold last found address and wrapping around when hit

end

7



HW#6 Review – Questions

• Memory free, 11 bits 0, times 4k=44k

• First fit, at 0x3 as it’s the first block with 4 consecutive

blocks free

• Best fit would go at 0xc as that’s exactly 16k

• Best fit might be better, reduce fragmentation

• Not possible to allocate 32k, even though 44k free

Could you de-frag the RAM? Not if C pointers involved

8



HW#7 Review – Virtual Memory

• Features of virtual memory?

◦ Giving illusion of more RAM than we have

◦ Demand paging

◦ Needed for caching? not always, only on machines

with VIPT (virtually-indexed) caches like on ARM/Pi

• What hides page lookup overhead? TLB

• What is it called when a page is not found in the page

tables?

Page fault. It’s the OS’s job to handle this

9



• If physical memory is full, room can be made by swapping

out a page to disk. Can also kick out pages that aren’t

dirty (like executable data). Also things like disk cache.

• Aside, what happens if can’t free up memory? Linux at

least has OoM killer that will kill processes to free up

memory. related: memory over-commit

10



HW#7 Review – Filesystems

• ext2 is traditional UNIX-style fs where filename is in

directory entry, which points to an inode (which has the

rest of the metadata and block pointers). Why are they

separate?

◦ Primarily for hard links (multiple filenames can point

to same actual file)

◦ Also lets inodes be more compact and not have to hold

a filename which can be long and of varying length

• ext2: 12 direct pointers, 1 indirect, 1 double indirect, 1

11



triple indirect

◦ direct pointer = 12*1k = 12k of data

◦ 1 indirect = 12k+(1k*256) = 268k of data

◦ 2 indirect = 12k+256k+(1k*256*256) = 65535k+268k=

65M

◦ 3 indirect = 12k+256k+65535k+16777216k=16GB

◦ Overhead, 1+256+65536 = 65M of indirect blocks

• How is ext2 better than fat: permissions, less filename

restrictions, bigger files

• How is fat better than ext2: available on all OSes, code

for accessing relatively simple/compact

12



• Holes in the filesystem

• Other filesystems supported by Linux: people chose a

variety

13



HW#7 Review – Device Types

• char device: bytes streaming in, can’t seek

• block devices: data comes in chunks, can usually more

or less have random access to all the data

14



HW#7 Review – Graphics

• attribute aligned, gives aligned memory allocation

• We need this for GPU mailbox access as the bottom bits

used to indicate channel

15



531-OS Locking Example

• Need to protect any place where multiple processes can

be in the kernel at the same time accessing shared state

• For example, memory allocation. Multiple CPUs could

be running code to access at same time

• If both do a find free() at same time (before the other

marks as reserved) and then return it, two processes

could end up using the same memory (bad)

• Where to lock?

• You could lock the whole thing, but ideally want to lock

16



the smallest amount of code possible.

• Be sure when a lock is taken that all possible ways to

exit the code release the lock, or could end up with

deadlock

• Note that functions can be run by multiple cores as local

variables end up on stack and each thread of execution

has its own stack

17



531-OS Locking Example – Code
void *memory_allocate(uint32_t size) {

int first_chunk ,num_chunks ,i;

// Lock here? (No , why?)

if (size ==0) size =1;

num_chunks = ((size -1)/ CHUNK_SIZE )+1;

// Lock here? (yes , why?)

first_chunk=find_free(num_chunks );

if (first_chunk <0) {

printk("Error!\n");

// Unlock here? (yes , why?)

return NULL;

}

for(i=0;i<num_chunks;i++) memory_mark_used(first_chunk+i);

// Unlock here? (yes , why?)

memset ((void *)( first_chunk*CHUNK_SIZE),0,num_chunks*CHUNK_SIZE );

// Unlock here? (no , why?)

return (void *)( first_chunk*CHUNK_SIZE );

}

18



IPC – Inter-Process Communication

• Processes want to communicate with each other

• Two issues:

getting the message across

synchronizing

19



Linux IPC Methods

• There are nearly 20. Other OSes like windows also have

a lot.

• Many are historical

20



Linux IPC – Files

• Just write to a file, all can see it.

• What happens when multiple readers/writers?

• fcntl() syscall, with one of its many features being file

locking

• For example: mail daemon writing mail to mailspool

while your client is also trying to delete mail from the

middle, what happens

• Things get exciting over network filesystems (NSF)

21



Linux IPC – Signals

• set up signal handler, sort of like a userspace interrupt.

• Can catch many things, such as segfault, control-C,

control-Z (sleep), hangup

• A few user-allowed ones like USR1 you can send.

• Has many of the problems of interrupts (locking).

• Many functions are not signal safe.

• Crazy ways (setjmp) to exit signal handler without

returning to where signal happened.

• Send with a kill() syscall (or kill/killall command line).

22



• What happens if system call interrupted?

23



Linux IPC – Pipes

• Anonymous – parent opens fd, forks child, child reads in

from fd. One way communication (half-duplex).

• ls -la | sort | uniq

• Linux actually has a pipe() system call

◦ uses a magic invisible pipe filesystem

◦ Creates two fds, one in, one out.

◦ Write to in, appears on out.

◦ There is a maximum size before it blocks waiting for

other side to consume (10k or so?).

24



• Shell command line pipes

◦ Shell forks children

◦ Over-writes stdout of one to be a fd

◦ Over-writes stdin of other to be same fd

◦ Can use close() and dup() syscalls to set this up

◦ Can use the popen() c library call to do something

similar from C.

◦ TODO: lookup how vmwOS does this

25



Linux IPC – Named Pipes (FIFOs)

• mkfifo creates a file on disk that’s a pipe.

• Multiple writers can write to this file and it is queued up

and then a process can read it.

• Processes that aren’t a child can access these

• Can open nonblocking

• Also get SIGPIPE if write to a closed pipe.

26



Linux IPC – Message Queues

• Sort of like a mailbox.

• Unlike pipes don’t have to wait until other side connect

(think phone-call vs text)

27



Linux IPC – SysV IPC

• Supports channeling (extra data that can be used to

filter)

• Can read things out of order.

• Use ipcs to see.

• Use ipcrm to remove

• Use msgset() system call

• POSIX – supports priorities

28



Linux IPC – Shared Memory

• Make a region of memory common between two

processes

◦ SysV – part of SysV IPC. Historical. Use shmget()

syscall

◦ POSIX –

◦ Anonymous mmap() memory – how Linux implements

POSIX? Can do this with a file, or anonymous if want

to be visible only in process.

29



Linux IPC – Sockets

• Regular network sockets – can open a regular network

connection to localhost (see ECE435)

• UNIX Domain Sockets – fast. Like network sockets, but

local so without going over the network. Live on the

filesystem (usually under /tmp or /var/run) so can have

file permissions. Can send file descriptors across.

• Netlink Sockets – designed for fast communication

between userspace and kernel. Also allow for broadcast

in user to user

30



Linux IPC – Sockets

• Inotify – can monitor filesystem and notice when

someone else changes a file

31



Linux IPC – FUSE

• FUSE – used for implementing a filesystem in userspace,

but can also be used to communicate

32



Linux IPC – Locks

• Locks can be thought of as a way of communicating

between processes/threads

• SysV semaphores – Use semget() syscall

• POSIX semaphores

• FUTEX – kernel accelerated locking, used by pthreads()

and such. You’re not really supposed to use these

manually.

33



Speeding up IPC

• Splice – move data from fd to pipe w/o a copy? VM

magic?

• Sendfile. zero copy?

34



IPC in the news / DBUS

• kdbus – dbus into kernel to make it faster

◦ Desktop Bus, D-Bus

◦ allows communication on a desktop bus between apps

and kernel

◦ example – incoming skype call can notify system, and

apps like the audio adjust and mp3 player can pause

music and set up microphone

◦ multicast

◦ example – battery low notification, apps can listen,

35



save state, prepare to shut down.

• Kernel developers resist it

◦ Most because who has to maintain it?

◦ Also how well designed is it? can it be used by other

tools?

◦ We already have a lot of IPC in the kernel, can it be

made generic?

◦ It is faster, but what if user programs just bloat to

negate this?

36


