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Welcome to ECE531/598!

We’re going to learn more about Operating Systems
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Reviewing the Syllabus

https://web.eece.maine.edu/~vweaver/classes/ece531_2023f/ece531_2023f.pdf
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Syllabus – Instructor Info

• Office is 203 Barrows

• Tentative Office hours 11am-noon Wed/Thurs.

Feel free to stop by if door open
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Pre-reqs / Requirements

• ECE331/ECE471 or equivalent experience

◦ Some previous Linux knowledge helps

◦ Does require some C and low-level Assembly. For the

non-computer engineers will try to go over it as much

as possible.

◦ Will involve setting up an ARM toolchain (possibly

cross-compiler) that also can be tricky at first.

◦ There will be some manner of low-level serial port

access which is hard at first.
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Textbook

• No required textbook.

• A few recommended books if you would like a reference.
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Syllabus – Hardware

• You will need a Raspberry Pi. More on that later.
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Syllabus – grading

• Homeworks, 50%: 11 total, lowest dropped.

◦ Generally will be due on Friday by beginning of class.

Will have a week to do them.

◦ Submission by e-mail, grades sent in response to that

e-mail, if you don’t like that let me know.

◦ Will send e-mail when assignment posted on website.

◦ Will reply with grades. Brightspace?

• Midterms, two, 25% total

Tentatively 17 October and 28 November
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• No final

• Class participation, 5%

Part of this is returning borrowed items at end.

• Project, 20%: Involves using what you learned to do an

operating-system project, with a final writeup and demo

the last week of classes. Can work in group. More

details as we get closer.
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Syllabus – Late Work / Regrade

• Late work penalty. I will consider late work, but best to

turn in what you have at time.

• Make regrade requests via e-mail.
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Homework Help

• I’ll be glad to help if you get really stuck on homeworks

• Often the easiest way to do this is send me your code, as

I can run it through the compiler and test it. Describing

your issue or sending me a screenshot might not be

enough and I’ll probably ask you to send your code
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Covid/Mask Policy

• Follow UMaine Guidance

• I’m still not convinced we’re in the clear, but everyone

else has given up

• If you test positive for Covid please don’t come to class

and let me know and we can make sure you get the work

done

• If you are sick for any reason but still coming to class I

encourage you to wear a mask
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Syllabus – Academic Honesty

• This has been a problem in the past!

• Do not copy code from other students, either current or

from previous years.

• Asking help from the professor/TA is fine

• Asking for general help, or discussing with classmates is

fine

• Even having someone look over your code to help find a

problem is fine

• Try to avoid giving someone code to use as a reference
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as in my experience it’s too tempting and the person will

“accidentally” submit it as their own

• Just don’t copy someone else’s code and submit it as

your own

This includes cut-and-paste or retyping

• Also don’t copy code off the internet (again, looking for

advice online is fine, but copying code directly is not)

• Don’t use AI tools that do the homework for you! (Like

Microsoft/Github Co-pilot/ChatGPT)
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Hardware for the Class Assignments

• Raspberry Pi Model 2 or 3.

Still working on 4 support

Will try to let you know soon as possible

• Micro-USB cable (To provide power)

• 4GB SD memory card (or larger) – preloaded with Linux

if possible

• USB/Serial adapter – something similar to

http://www.adafruit.com/products/954

I will loan these out, no need to buy one
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• Some way to write an SD-card
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Why Pi’s?

• Pi is real hardware (not a simulator!), relatively cheap,

and relatively well documented

• The problem is each model of Pi has very different

hardware

• Different chips, newer ones are 64-bit multicore, various

low-level things change each release. It’s hard to keep

up.

• Even just blinking the ACT LED changes each release
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Optional Hardware (not necessary for class
but might make development easier)

• Case to hold the Pi

• GPIO breakout cable

• ethernet cable

• HDMI cable

• USB keyboard
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The Case for Operating Systems
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Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors
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• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on
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Problems with “Bare Metal”

• It is difficult and low-level

• Why not offload the tricky stuff to code written by

someone else?

• These days usually that’s an Operating System

• Although in this class, we’re the someone else
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Why Use an Operating System?

• Provides Layers of Abstraction

– Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

– Abstract software: with VM get linear address space,

same system calls on all systems

– Abstraction comes at a cost. Higher overhead,

unknown timing
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• Multi-tasking / Multi-user – why useful?

• Security, permissions (Linus dial out onto /dev/hda)

• Common code in kernel and libraries, no need to re-

invent (note: while this can be a feature of an OS, it’s

not exclusive to that. You can have code libraries for

bare-metal systems)
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Common Operating Systems

• UNIX-like – UNIX (Solaris, IRIX, AIX, ULTRIX, XENIX),

Linux, FreeBSD, OpenBSD, NetBSD, OSX/ioS, MINIX

• VMS

• WindowsNT based (NT/2000/XP/Vista/8/10/etc)

• CP/M, DOS based (DOS, Windows 3.1, Windows

95/98/ME)

• Embedded OSes (QNX, Vxworks, OpenRTS, ThreadX)
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• Mainframe OSes (IBM z/OS)

• Other – MacOS, BeOS, AmigaOS, Haiku, Plan9
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In this class will primarily discuss Linux

• Free

• Source code available

• I know it well; have contributed many patches

• It is showing its age though, not as exciting to work on

as in 90s

• What will replace Linux?

26



What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included? (lawsuit)

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.
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Linux Distributions

• RedHat/Fedora/Suse/Ubuntu/Debian
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What Does Linux Provide

• Boot/initialization

• Hardware drivers

• Network (TCP/IP and others)

• Interrupts, DMA

• Multi-tasking/Job scheduling

• Virtual Memory

• Filesystems

• Security(?)

• Graphics?
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What Language do you write OS in?

• Assembly Language?

• C?

• C++?

• Java? Python? Javascript?

• Rust? Go?
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