
ECE 531 – Advanced Operating
Systems
Lecture 2

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 August 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Homework 1 will be posted

• Update on the Raspberry Pi situation

• Need Pi, SD-card (an extra is nice if you already have

Linux on one), USB-micro power for cable. Also some

way to write a file to SD-card (SD card reader in laptop

is fine).

1

What Language do you write OS in?

• Assembly Language? (why not)

• C?

• C++? (why not)

• Java? Python? Javascript?

• Rust? Go?

2

Before you can run an Operating System
you first have to Compile it from Source

Code

• Have you ever built your own kernel?

• Have you ever built your own C-library?

• Have you ever built your entire userspace? web-browser?

3

Aside on Build Systems

• Usually you don’t manually compile code one file at a

time

• There are systems that can automate or script this

• The traditional Linux/UNIX way is with a tool called

“make” and “Makefiles” that describe dependencies and

how to build the code

• If you use an IDE it might have its own way of doing

things

• People are constantly proposing alternatives, things like

4

CMake but they all have their own issues

5

Linux Kernel Source Code

• What language is the kernel written in?

• C and assembly (with some helper shell/perl scripts)

• Why C?

◦ Low-level, close to hardware (portable assembler)

◦ Fast

◦ Historical

◦ Downsides: buggy, security bugs

• Why not C++ (or Java or Rust or Go)

◦ Historical reasons, cost to change

6

◦ Overhead/speed (is 10-15% slower OK?)

◦ Higher level languages harder to predict (operator

overload, exception handling, garbage collection, etc)

◦ Recently there’s been a push to allow writing parts of

the kernel in Rust. Ongoing.

7

Large Open-source Project Development

• Linux is a prime example

• Communications: mailing list, forum, etc (Linux: linux-

kernel)

• Way to submit changes: git pull requests, patches made

with diff tool

• Once a project gets large enough it will need to have

rules

8

Source Code Management

• Allows tracking changes to source code, authorship,

commit messages describing changes to code, branches,

etc

• Allow debugging via bisect

• Historical: SCCS, CVS, subversion, mercurial

• git

◦ Linux lasted long time w/o SCM

◦ Linus got burned out. McVoy came up with

(proprietary) bitkeeper

9

◦ bitkeeper hit limits and also trouble with users trying

to reverse-engineer

◦ Linus got fed up and took a few weeks to invent git

10

Linux kernel releases

• Currently 6.5

• Linus Torvalds releases kernel

• Spends next two weeks in “merge window” merging all

the well-tested patches that have accumulated. Then

releases -rc1

• Series of -rc as things are tested

• After -rc7 or -rc8 releases final version. Repeat

• Distributions or volunteers will often maintain older

’stable’ versions that aren’t quite as cutting edge

11

Linux kernel size

• Git checkout on my machine is 5.5G (before building)

• After building, 15G

• 73k files, 31 architectures (these numbers are older)

• For comparison, September 1991, Linux 0.01

512kB disk, 100 files, 1 architecture

12

Building Linux Kernel by Hand

• Check out with git or download tarball:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

http://www.kernel.org/pub/linux/kernel/v6.x/

• Configure. (complicated and verbose)

make config or make menuconfig

Also can copy existing .config and run make

oldconfig

• Compile.

13

http://www.kernel.org/pub/linux/kernel/v6.x/

make

What does make -j 8 do differently?

• Make the modules.

make modules

• sudo make modules install

• sudo make install or manually copy bzImage to boot,

update boot loader

• Cleanup, make clean and make mrproper

14

Building Linux Automated

• If in a distro there are other commands to building a

package.

• For example on Debian make-kpkg --initrd

--rootcmd fakeroot kernel image

• Then dpkg -i to install; easier to track

15

Overhead (i.e. why not to do it natively on
a Pi)

• Size – clean git source tree (x86) 1.8GB, compiled

with kernel, 2.5GB, compiled kernel with debug features

(x86), 12GB!!!

Tarball version with compiled kernel (ARM) 1.5GB

• Time to compile – minutes (on fast multicore x86

machine) to hours (18 hours or so on Pi-B+)

16

Developing Linux

• Fun!

• Despite news reports, odds of getting flamed by Linus

(or even have him realize you exist) are very low.

• Can be tedious, can take months to get a change

committed

• Much of low-hanging fruit already gone

• Code is not really all that well commented

• Might be stuck bisecting for days

17

Linux on the Pi

• Mainline kernel, bcm2835/bcm2836 tree

Missing some features

• Raspberry-pi foundation bcm2708/bcm2709 tree

More complete, not upstream

• Why everything not upstream? Common problem,

especially on ARM. Getting upstream is hard, high

standards. Takes patience and time, small one-off ARM

boards do not have the resources for the process.

18

Compiling – how does it work?

Traditionally this is how it works on gcc, others may vary.

• compiler takes C-code (.c), makes assembly language

(.s)

• assembler takes assembly (.s), makes object file (.o or

.obj) machine language

• linker takes object file, resolves addresses, arranges

output based on linker script, creates executable

• Who wrote the first compiler? Assembler? Machine

language?

19

Tools

• compiler: we use gcc, others exist (intel, microsoft,

llvm/clang)

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

• linker: ld

20

Converting C to assembly

• You can use gcc -S to have it dump out the assembly

it makes

• The whole process is fairly complex, you can take whole

classes on it.

21

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

22

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

23

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

24

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

25

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

26

Cross-compiling

• Building for a different architecture

• Why? ARM machines often slow

• Why not? Source tree has to be handle this. Makefile.

etc. Usually easier to compile natively

• Linux kernel tends to cross compile OK.

27

