
ECE 531/598 – Advanced Operating
Systems
Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 September 2023

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was posted, due on Friday.

• Next homework will use the Pi. Let me know if you need

to borrow one.

You will also need an SD card and a way to write SD

cards.

1



Compiler Followup Last Time

• Not really needed for this course, but interesting, and a

bit sad UMaine doesn’t offer a course

• Compilers often broken into two parts

• Front End

◦ Parses the code and creates something called

Intermediate Representation (IR)

◦ Lexer/Parser, can use tools like lex/yacc (or on Linux,

flex/bison)

Lexer scans input, converts to tokens

2



Parser processes the tokens

◦ Can also write own EBNF parser. As a last resort

brute-force with C string parsing (but that’s a pain)

◦ Recurses through code, so you have a for statement,

it will get that, then the first expression it will call off

and if that statement includes other statements it can

nest

◦ This is where things get tricky. In C can have arrays

inside of structs inside of arrays, etc, and infinitely

nesting loops and if/else statements

◦ Nice thing about this, you can have different front-

3



ends, C, C++, Java, FORTRAN, etc

• Back End

◦ Take IR and converts it to assembly language

◦ Can have multiple backends, so can take IR to x86, or

ARM, or RiscV, etc. Also how cross-compilers work.

◦ One tricky part is “register allocator”. Most

architectures have a limited number of registers so

need to allocate variables to these in an optimal way

Need to find out when register no-longer used so can

re-use it.

Also issues like various paths though if/else statements

4



but need to make sure the final value for a variable is

correct

• Optimizing Compiler

◦ Before running the back-end can run multiple

optimizing passes

◦ Things like constant folding (2*2 = 4) or things like

(x*2 to a left shift) or hoisting, unrolling, etc

◦ This is where “undefined behavior” can be an issue as

compiler authors love exploiting that in order to make

optimizations better

5



Booting a System

• Why is it called booting?

• Most likely source is the idea of “Pulling oneself up by

ones bootstraps”, i.e., getting somewhere by starting

with nothing

6



Simple Booting

• Simplest systems have code in ROM.

The CPU initializes, points the Program Counter to a

known location, and starts executing.

• The STM32L boards in ECE271 do something similar;

code is in flash, reset vector (at offset 0) points at code

to start. press reset, runs reset vector, up to you to do

everything else.

7



Firmware

• Low-level code (often written in assembly language) that

initializes the system.

• Often in ROM/EEPROM/FLASH

• Boot firmware initializes system.

◦ Init RAM? Set it up (often over i2c), clear out random

or old contents (if a soft reboot). This part operates

without memory or stack to use, tricky.

◦ Init other hardware. I/O, serial ports, keyboard,

display, etc.

8



◦ Load code to boot. Where from? Hard-disk, floppy,

network (PXE), CD/DVD, USB, SD-card, etc. Old

days: tape, paper-tape, console switches?

• Might have other interfaces: boot selection/configuration

screen?

• Some firmware provides routines for hardware to use,

for things like accessing disks, writing to screen, reading

keyboard, initializing security, etc.

• Firmware development is hard. Not all corner-cases well

tested (can it boot Windows? Ship it). Kernel and

Firmware devels have antagonistic relationship.

9



Booting on x86

• BIOS original firmware. 16-bit. Dates back to CP/M

days. Provided booting and a library for accessing I/O.

(MS-DOS a thin layer over BIOS).

• These days EFI and uEFI replacing it, 32/64-bit. Written

in higher level language.

• Firmware provides other interfaces, like power

management, ACPI, device enumeration, etc.

• x86 firmware can use SMM mode which allows

secret/hidden code running behind the scenes for things

10



like hardware emulation (USB keyboards) and power

management.

11



Booting on x86 / Historical

• Firmware traditionally loaded a 512Byte bootsector from

floppy/hard disk (last two bytes 0x55 0xAA) to 0x7c00

and jumped to it. This “first stage” then had enough

code to load a more complex “second stage”

• Demoscene: people write demos or entire games that fit

in one bootsector

12



x86 Bootloader

• The bootloader (GRUB is common on x86 Linux) then

loads the operating system. Provides nice graphical

interface often (to select images) and a console for

command line arguments and browsing kernel images.

13



Loading Linux

• Linux is usually on disk, sometimes a separate boot

partition. Complicated because blocks might not be

contiguous on disk.

• Some Linux images can be loaded directly, without need

of bootloader.

• Linux image itself can be complex

14



Linux Image

• “vmlinux” (why called that? historical, unix, vm unix)

• decompresser and compressed image (zImage, bzImage,

uIMage, etc)

• When building, the kernel image is taken, stripped,

compressed. piggy “piggyback” code put on, as well

as decompresser. Originally floppy boot code stuck on

beginning as well.

• Different entry points. On x86 BIOS boots into 16-bit.

EFI and bootloaders can jump into 32/64

15



• So optionally boots in 16-bit mode. Switches to

32-bit mode. If 64-bit, optionally switch to 64-bit

Decompressed kernel to 0x10 0000 (might have to move

decompress code). (above 1MB. Why? 640k) What

about initrd?

• Jump to startup 32 / startup 64 function

• 16-bit code handles various stuff, gets memory size from

BIOS, etc

• 32/64 relies more on boot loader. Has specification for

how registers set up, etc.

• relocates decompression code if needed. Sets up stack,

16



clears BSS, Decompresses.

• relocate if needed. why? randomization is one.

• Memory map. Virtual mem. First 896M of physical

mem mirrored in top of 32-bit. Why? So kernel can

easily copy to/from. Can convert kernel virt to phys with

just subtraction. Complicated if more than that much

RAM, have to copy around. HIGHMEM.

• space above for vmalloc

• somewhat more complicated 64-bit

• kernel just an ELF executable

17



Linux Userspace Transition

• Starts Userspace program “init” (old days simple

program and shell scripts, these days “systemd”)

• Sometimes an “initrd” is included too that has enough

drivers to get Linux going and a very minimal filesystem

to help with booting before disks/filesystem ready.

18



Disk Partition Aside

• Master Boot Record, Boot Sector

• Followed by partition table

• Way to virtually split up disk.

• DOS – old partition type, in MBR. Start/stop sectors,

type

• Types: Linux, swap, DOS, etc

• Had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many).

19



• UEFI/GPT (GUID) more flexible, greater than 2TB

20



Bootloaders on ARM

• The most common is uBoot

• uBoot – Universal Bootloader, for ARM and other

embedded systems

• Almost like minimal OS

• More of a challenge to write a bootloader for a widely

nonstandardized architecture like ARM. (Why is ARM

so nonstandardized?)

21



Uboot Booting

• Most other ARM devices, ARM chip runs first-stage

boot loader (often MLO) and second-stage (uboot)

• FAT partition

Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

The boot firmware (burned into the CPU/ROM) is smart

enough to mount a FAT partition

22



Booting on typical ARM/uboot

• vmlinux. strip. compress. piggy / piggyback. convert

to zImage. mkuimage converts to uimage suitable for

booting with uboot

• No bios really. Bootloader provides all info.

• Device Enumeration: Device Tree provides config info

for hardware (memory size, interrupts, what hardware is

there). This allows kernel that will run on many ARM

boards (PI, beaglebone, pandaboard, etc) rather than

having to have a different hard-coded kernel for each

23



possible platform.

24



Kernel booting Summary

• Initializes hardware. First part asm. Transition to C as

quickly as possible. First thing to initialize. Memory.

Then simple in/out. Enable keyboard, simple VGA, serial

console. So printk can work.

• Relocates decompression code

• Decompresses

• Parse the resulting ELF file.

• Apply any relocations

• Jump to entry point

25



Raspberry Pi Booting

• Unusual (and has changed over the past few years)

• Small amount of firmware on SoC

• Pi is actually a large GPU chip with helper ARM chips

◦ VPU – Dual Core Videocore IV chip CPU,

SIMD, Parallel Processor, ThreadX OS, co-ordinates

everything, as well as video codecs, power, etc.

◦ ISP – Image Sensor pipeline, processing for the cameras

◦ QPU – Quad Processor Unit – 24 GFLOP compute

pipeline, co-ordinate and vertex shader.

26



Raspberry Pi Booting, More Details

• Power on – First stage – Boot ROM in GPU starts up

GPU runs things. Explains rainbow pattern, lightning

bolts, etc

• First stage tries to load bootcode.bin second stage

◦ On original Pi this was just SD card

◦ Pi3 can boot off of Secondary SD, SPI, NAND, USB

or network.

Also some complex hack to flash the OTP (?) to allow

GPIOs to be dedicated to boot-selection

27



◦ bootcode.bin loaded into L2 cache (shared

CPU/GPU?) and executed

• Second stage – bootcode.bin – binary blob that is loaded

from the SD card and run by GPU. 1 million+ lines of

code? Mostly written and maintained by one guy at

Broadcom?

◦ Has own non-ARM assembly language

◦ Efforts to reverse engineer:

https://github.com/christinaa/rpi-open-firmware

https://github.com/hermanhermitage/videocoreiv

◦ Inits SDRAM, gets ARM chips ready (if multiple, puts

28

https://github.com/christinaa/rpi-open-firmware
https://github.com/hermanhermitage/videocoreiv


them in low-power sleep loop)

• Third stage – start.elf (cd, db, x)

(used to be an additional stage before this)

Loads and parses config.txt

Lots of settings in config.txt

◦ cd = cut down, if only 16MB of GPU memory specified

ARM and GPU share RAM. Cuts out OpenGL, etc.

◦ x = extra (have things like video codecs, camera)

◦ db = debug, extra asserts

◦ Also fixup.dat (cd, db, x) – used for configuring

memory split?

29



• Finally loads kernel. kernel.img (old 1176 Pis),

kernel7.img (cortex a7 pis and backwards compat).

kernel8.img hack, for 64-bit pi3

cmdline.txt has command line passed to kernel

• Device tree files, .dtb.

When kernel booted r0=?, r1=?, r2=pointer to config

Old fashioned, ATAGS, set of value/data pairs for Linux

booting. New: flattened device tree. Standard for all

Linux builds.

Other? ACPI is x86 way, new ARM servers support this

so Windows can boot.

30



These are important, have things like location of

hardware in memory, which IRQ to use, which GPIOs to

use, how much memory is free and where it is, what type

of CPU, etc. By standardized format, can have “generic”

linux kernel that can run on any ARM generation without

having to hard code that all.

31



Recent Developments

• TODO: update above for newest Pi models

• Pi4: second stage loader got too big (lots of features,

PCIe, netboot, etc) so now lives on EEPROM on board.

This gets updated

If fails, special rescue image on SD card can fix

• Now 4 kernels

◦ kernel.img = old 2835 ARMv6 systems

◦ kernel7.img = 2836 ARMv7 systems (32-bit)

◦ kernel7l.img = 2711 (pi4, but 32-bit compat)

32



◦ kernel8.img = pi3/pi4 64-bit, set this in config.txt

33



So how do we start with own OS?

• Make simple binary.

• Compile it with ARM toolchain (cross compile?)

• Replace kernel.img on your memory card.

• Boot into it!

• Easier said than done.

• What kind of setup do you have?

34


