
ECE 531 – Advanced Operating
Systems
Lecture 6

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #2 due Friday

• Homework #3 will be released shortly

• Loaning out USB-serial adapters. Try to take care of

them, they can be a bit pricy

1

Some notes on the Setup of Assignments

• Some OS courses just have you do regular userspace

code assignments

• Some will code an actual OS, but in a simulator like

Qemu

• I like the idea of coding to real hardware even though

it’s tricky

• ARM vs x86, x86 is complex and a Pi is less expensive if

we somehow break things

2

Ways to do the assignment

• I still recommend having a cross compiler on a

desktop/laptop and swapping SD cards. It is a bit

of a pain to get setup

• Could you develop on a Pi and dual boot? This avoids

cross compiling

◦ Hard way: USB/SD card and a lot of rebooting and

swapping. Doable but a pain

◦ Easier way: if you can install a bootloader like Uboot

and dual boot. Might be possible on a Pi4.

3

• Also it would be nice if you could do something like STM

boards or Pi Pico where you just flash EPROM/reboot

over USB without any swapping

4

HW#2 Notes

• Trouble cross compiling?

• This is often the biggest hurdle

• If on x86 Linux laptop/desktop, ideally you can just

install the cross-compile toolchain bundled with your

distro

• MacOS using the binaries from the ARM site (see the

homework handout) seem to work OK, might have to

install make from xcode

• Haven’t tested Windows, it’s definitely possible, I just

5

don’t have a test system

6

UARTs on the Pi

• Two UARTs (six on pi4?)

◦ ARM PL011 UART

◦ 16550-based mini-UART

• Default changed from PL011 to mini on Pi3/Pi4 because

bluetooth was hooked up to PL011

7

BCM2835 PL011 UART

• /dev/ttyAMA0 on Linux

• Section 13 of the Peripheral Manual

• Separate 16x8 transmit and 16x12 receive FIFO memory.

Why 12? 4 bits of error info on receive. overrun (FIFO

overflowed), break (data held low over full time), parity,

frame (missing stop bit).

• Programmable baud rate generator.

• start, stop and parity. These are added prior to

transmission and removed on reception.

8

• False start bit detection.

• Line break generation and detection.

• Support of the modem control functions CTS and RTS.

However DCD, DSR, DTR, and RI are not supported.

• Programmable hardware flow control.

• Fully-programmable serial interface characteristics: data

can be 5, 6, 7, or 8 bits

• even, odd, stick, or no-parity bit generation and detection

• 1 or 2 stop bit generation

• baud rate generation, dc up to UARTCLK/16

• 1/8, 1/4, 1/2, 3/4, and 7/8 FIFO interrupts

9

• No IrDA or DMA support, no 1.5 stop bits.

10

mini-UART

• /dev/ttyS0 on Linux

• Section 2.2 of BCM2835 document

• UART Clock scales with CPU frequency

If cpu scaling then you are out of luck (for Linux you

can specify boot to have fixed clock, or to swap back in

the good UART)

• Registers mixed in with SPI registers

• Roughly register compatible with popular 16550 UART

• Set up GPIOs first, if you don’t it will see RX as zero

11

and start receiving 0x0 bytes (it ignores stop bits) and

FIFO will fill in 2.5usec

• 7 or 8 bit, parity not supported, RTS/CTS possible,

8-byte FIFO

12

BCM2835 PL0111

• We’ll be using this one

• Can map to GPIO14/15 (ALT0), GPIO36/37 (ALT2),

GPIO32/33 (ALT3) (hooked to Bluetooth on Pi3)

• Default mapping has RX/TX on GPIO14/15. It is

possible to configure RTS/CTS pins for HW flow control,

but our adapter doesn’t support them anyway.

• Base address IO BASE+0x201000, 18 registers

13

Hooking up Cable to Pi

• Linux should come with a driver. May need to download

PL2303 OSX or Windows driver.

• Some useful documentation:

http://www.adafruit.com/products/954

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable

• Don’t hook up the red wire unless you know what you’re

doing! This would feed 5V from USB-serial straight into

your Pi. If you do that while providing power via the

normal power port bad things could happen.

14

http://www.adafruit.com/products/954
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable

Note you can power the pi via the USB-serial cable if no

other power is connected, but Pi3s and Pi4s will want

to draw more power than it can provide.

• Hookup:

Black (GND) to pin 6

White (TXD) to pin 8 (GPIO14)

Green (RXD) to pin 10 (GPIO15)

15

Pin6 = Ground = Black

Pin8 = GPIO14 (TX) = White

Pin10 = GPIO15 (RX) = Green

Pin39 Pin40

Display

Pin1 Pin2

Camera

HDMI

Power

USBUSB

Ethernet

Audio

16

Low-level Programming

• In the previous homework we used volatile to trick

the compiler into letting us access hardware directly

• Is there a better way to do it?

• Some things would be better if we could directly specify

the code we want to run at the assembly level

17

Inline Assembly

• Can write assembly code from within C

• gcc inline assembly is famously hard to understand/write

• You’ll still see the volatile keyword telling the compiler

to not try to optimize the code within

18

Delay Inline Assembly Example
static inline void delay(int32_t count) {

asm volatile("__delay_ %=: subs %[count], %[count], #1; "

"bne __delay_ %=\n"

: : [count]"r"(count) : "cc");

}

• : output operands (none in this example)

= means write-only, + is read/write r=general reg

• : input operands

• : clobbers – list of registers that have been changed

memory is possible, as is cc for status flags

• can use %[X] to refer to reg X that can then use

[X]"r"(x) to map to C variable

19

Memory Mapped I/O (MMIO)

• As opposed to separate I/O space (as found on x86 and

some other processors)

• For HW#3 instead of using array for MMIO access, we

will use inline assembly

• technically, to be correct, we need memory barriers (See

BCM2835 Document 1.3)

◦ The AXI bus can return reads out of orders if talking

to different devices

◦ When switching from one to another write barrier

20

before first write and read barrier after last read.

◦ Also modern out-of-order processors might let loads

bypass loads or stores by pass stores. Fine for memory,

not so much I/O

◦ ARM has a less strict memory model than x86

21

mmio read() / mmio write())
static inline void mmio_write(uint32_t address , uint32_t data) {

uint32_t *ptr = (uint32_t *) address;

asm volatile("str %[data], [%[address]]" :

: [address]"r"(ptr), [data]"r"(data));

}

NOTE: In the homeworks I provide a version of this,

bcm2835 read() / bcm2835 write() that handle ajusting

for the differing iobase on the different pi models.

22

Writing a Device Driver

• Code to initialize the device

• Set of methods for interacting with device

(read/write/ioctl/etc)

• Code to run if device is removed

• Interrupt handling

23

Device Initialization

• Ideally the documentation will tell you how to do this

• The default values we’d like to use

◦ 115200 8N1 Software Flow

◦ 115200 Baud

◦ 8 data bits (7 or 8)

◦ no parity (even, odd, none)

◦ 1 stop bit (1, 1.5, or 2)

24

PL011 UART Init – First Disable
/* Disable UART -- Command Register */

mmio_write(UART0_CR , 0x0);

25

PL011 UART – Set up GPIO Pins
/* Setup GPIO pins 14 and 15 */

/* Disable the pull up/down on pins 14 and 15 */

/* See the Peripheral Manual for more info */

/* Configure to disable pull up/down and delay for 150 cycles */

mmio_write(GPIO_GPPUD , GPIO_GPPUD_DISABLE);

delay (150);

/* Pass the disable clock to GPIO pins 14 and 15 and delay*/

mmio_write(GPIO_GPPUDCLK0 , (1 << 14) | (1 << 15));

delay (150);

/* Write 0 to GPPUDCLK0 to make it take effect */

mmio_write(GPIO_GPPUDCLK0 , 0x0);

26

PL011 UART – Disable Interrupts
/* Mask all interrupts. */

mmio_write(UART0_IMSC , 0);

/* Clear pending interrupts. */

mmio_write(UART0_ICR , 0x7FF);

27

UART Interrupts

• Supports one interrupt (UARTRXINTR), which is

signaled on the OR of the following interrupts:

1. UARTTXINTR – if FIFO less than threshold or (if

FIFO disabled) no data present

2. UARTRTINTR – if receive FIFO crosses threshold or

(if FIFO disabled) data is received

3. UARTMSINTR which can be caused by

– UARTCTSINTR (change in nUARTCTS)

– UARTDSRINTR (change in the nUARTDSR)

28

4. UARTEINTR (error in reception)

– UARTOEINTR (overrun error)

– UARTBEINTR (break in reception)

– UARTPEINTR (parity error)

– UARTFEINTR (framing error)

29

PL011 UART – Set speed

• Note: At some point around the Pi4 release the Pi

people updated the firmware so all Pis use 48MHz base

frequency instead of 3MHz

• Example: Calculate for 14.4kb/s

• Divider = BaseFrequency
16×Desired

• Divider = 48000000
16×14400 = 208.333

• IBRD register = Integer part = 208.

FBRD register = (.333× 64) + 0.5 = 21.8 so 22 or 23.

• mmio write(UART0 IBRD, 208);

30

mmio write(UART0 FBRD, 23);

31

PL011 UART – Set 8N1
/* Enable FIFO */

/* And 8N1 (8 bits of data , no parity , 1 stop bit */

mmio_write(UART0_LCRH , UART0_LCRH_FEN | UART0_LCRH_WLEN_8BIT);

32

PL011 UART – Enable
/* Enable UART0 , receive , and transmit */

mmio_write(UART0_CR , UART0_CR_UARTEN |

UART0_CR_TXE |

UART0_CR_RXE);

33

PL011 UART – Send byte
void uart_putc(unsigned char byte) {

/* Check Flags Register */

/* And wait until FIFO not full */

while (mmio_read(UART0_FR) & UART0_FR_TXFF) {

}

/* Write our data byte out to the data register */

mmio_write(UART0_DR , byte);

}

34

PL011 UART – Receive byte
unsigned char uart_getc(void) {

/* Check Flags Register */

/* Wait until Receive FIFO is not empty */

while (mmio_read(UART0_FR) & UART0_FR_RXFE) {

}

/* Read and return the received data */

/* Note we are ignoring the top 4 error bits */

return mmio_read(UART0_DR);

}

35

Sending more than just a byte

• We now know enough to send / receive single characters

• While that’s fine for sending plain text, can we go

fancier?

36

Escape Codes

• VT102/Ansi

• Historical reasons, oldest terminals. Used to be hundreds

of types supported (see termcap file)

• Color, cursor movement

• The escape character (ASCII 27) used to specify extra

commands

37

Carriage Return vs Linefeed

• Typewriters

• Carriage return (\r), go to beginning of line

• Linefeed (\n), move down a row

• DOS uses both CRLF

• UNIX uses just LF

• Old MacOS used just CR

• Most com programs want both, so our code should

output both

38

Do other OSes have to handle this CR/LF
difference

From linux/drivers/tty/serial/serial core.c
void uart_console_write(struct uart_port *port , const char *s,

unsigned int count ,

void (* putchar)(struct uart_port *, int))

{

unsigned int i;

for (i = 0; i < count; i++, s++) {

if (*s == ’\n’)

putchar(port , ’\r’);

putchar(port , *s);

}

}

39

