
ECE 531/598 – Advanced Operating
Systems

Lecture 10

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 September 2023

Announcements

• Homework #4 Deadline extended

• Homework #5 will be posted

• Raspberry Pi 5 was released

1

More notes for HW#4

2

Accessing MMIO registers

• For the BCM2835 peripherals, use bcm2835 read() and

bcm2835 write() to do MMIO access

These adjust for the differing location of the MMIO

regions on different Pis

• Don’t use the mmio read()/write() routines unless

you have to (I renamed them to make this hard to do

accidentally). The only code that uses them is the new

gic-400 irq controller code on Pi4 because it lives in a

different mmio region separate from the peripheral IO

3

Blocking vs Nonblocking Syscall

• Blocking system calls – program stops, waits for reply

before it can continue

• Nonblocking – system call returns right away, although

the result might just be “no data available”

• What if a blocking system call tried to block inside the

kernel with interrupts disabled? Real OS uses queues

and wakeups to put processes to sleep when blocking,

not just busy spinning.

4

Syscalls are Slow!

• Doing a user-¿kernel transition is slow

• Exceptions are slow on modern CPUs

• Linux is highly optimized but still slow

• Security (Meltdown) mitigations might slow things

further (need to flush TLB?)

• Are there alternatives?

5

Linux vsyscalls/VDSO

• Some common Linux syscalls don’t really need any

action from the kernel, but just return a static

or easily calculated value (getpid(), get cpu(),

gettimeofday()

• Could we map some kernel memory into userspace to let

the user access it without a syscall?

• vsyscalls do this. At fixed address, you could jump there

to get the data without entering kernel

• Security issue: as with ASLR, code in fixed place could

6

be used by attacker

• Solution was VDSO which does something similar but

the location can be mapped to different locations

• Can run “ldd /bin/ls” and you’ll see the vdso mapped

on modern Linux executables

7

Linux io uring

• This one is more recent, Linux 5.1 (2019)

• Most useful for asynchronous I/O

• Can set up two circular queues, submission an completion

• Use syscalls to set this up, with head and tail pointers

• Add info for a syscall-like request to submission queue,

update tail pointer

• Kernel checks and sees there’s a request and handles it

• When kernel is done it updates head/tail pointers and

puts results in completion queue

8

• This allows kernel communication without constant

syscalls

• Under current development, some security issues recently

(2023)

9

Userspace Executables

10

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

• Can install “elfutils” and use something like “readelf -a

/bin/ls” to get info on what’s inside

11

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

12

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

13

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

14

Linux Virtual Memory Map

• The view a Linux program has of memory, note it doesn’t

match Physical memory via CPU/OS magic

• We will go over virtual memory in much greater detail

in a future lecture

15

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

16

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

17

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

DANGER: MELTDOWN

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

18

Address Space Layout Randomization
(ASLR)

• For security reasons ASLR is enabled by default (you can

disable)

• Each run of a program the location of text / data / bss

/ heap / stack might be moved around

• This in theory makes it harder for attackers to find

functions/data they want to use

• Makes performance analysis hard as execution ends

up being less deterministic (yes, some code behaves

19

differently depending on memory addresses)

20

Loader

• /lib/ld-linux.so.2

• loads the executable

21

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes

• Lots of debate about what is better: apt-get install vs

the app-store (flatpack, etc)

22

How Dynamic Linking Works

• Can read about how things load on Linux here:

https://lwn.net/Articles/630727/

https://lwn.net/Articles/631631/

• ELF executable can have interp section, which says to

load /lib/ld-linker.so first

• This loads things up, then initialized dynamic libraries.

• Links things in place, updates function pointers and

shared variables, offset tables, etc.

• Lazy-Linking is possible. Function calls just call to a

23

stub that calls into linker. Only resolves the link if you

actually use it. Why is this a benefit (faster startup, not

load things not need). Does add indirection every time

you call.

• Can use “ldd /bin/ls” to see what dynamic libraries a

program is using

24

How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

Possibly not ELF. Shell scripts, etc.

25

• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

26

