ECE 531/598 — Advanced Operating

Systems
Lecture 10

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

28 September 2023



Announcements

e Homework #4 Deadline extended
e Homework #5 will be posted

e Raspberry Pi 5 was released



More notes for HW#4



Accessing MMIO registers

e For the BCM2835 peripherals, use bcm2835_read () and
bcm2835_write () to do MMIO access
These adjust for the differing location of the MMIO
regions on different Pis

e Don't use the mmio_read()/write() routines unless
you have to (I renamed them to make this hard to do
accidentally). The only code that uses them is the new
gic-400 irq controller code on Pi4 because it lives In a
different mmio region separate from the peripheral 10

-y 3



Blocking vs Nonblocking Syscall

e Blocking system calls — program stops, waits for reply
before it can continue

e Nonblocking — system call returns right away, although
the result might just be “no data available”

e What if a blocking system call tried to block inside the
kernel with interrupts disabled? Real OS uses queues
and wakeups to put processes to sleep when blocking,
not just busy spinning.

-y 4



Syscalls are Slow!

e Doing a user-;j kernel transition is slow
e Exceptions are slow on modern CPUs
e Linux is highly optimized but still slow
e Security (Meltdown) mitigations might slow things

further (need to flush TLB?)
e Are there alternatives?



Linux vsyscalls/VDSO

e Some common Linux syscalls don't really need any
action from the kernel, but just return a static
or easily calculated value (getpid(), get_cpuQ),
gettimeofday ()

e Could we map some kernel memory into userspace to let
the user access it without a syscall?

e vsyscalls do this. At fixed address, you could jump there
to get the data without entering kernel

e Security issue: as with ASLR, code in fixed place could

-y 6



be used by attacker

e Solution was VDSO which does something similar but
the location can be mapped to different locations

e Can run “ldd /bin/Is" and you'll see the vdso mapped
on modern Linux executables



Linux io_uring

e This one is more recent, Linux 5.1 (2019)

e Most useful for asynchronous 1/0

e Can set up two circular queues, submission an completion

e Use syscalls to set this up, with head and tail pointers

e Add info for a syscall-like request to submission queue,
update tail pointer

e Kernel checks and sees there's a request and handles It

e When kernel is done it updates head/tail pointers and
puts results in completion queue

-y g



e [his allows kernel communication without constant
syscalls

e Under current development, some security issues recently
(2023)



Userspace Executables

10



Executable Format

e ELF (Executable and Linkable Format, Extensible
_inking Format)

Default for Linux and some other similar OSes

neader, then header table describing chunks and where
they go

e Other executable formats: a.out, COFF, binary blob

e Can install “elfutils” and use something like “readelf -a
/bin/Is" to get info on what's inside

/Y 11



ELF Layout

ELF Header

Program header

Text (Machine Code)

Data (Initialized Data)

Symbols

Debugging Info

Section header

12



ELF Description

e ELF Header includes a “magic number’ saying it's
Ox7f,ELF, architecture type, OS type, etc. Also location
of program header and section header and entry point.

e Program Header, used for execution:
has info telling the OS what parts to load, how, and
where (address, permission, size, alignment)

e Program Data follows, describes data actually loaded
Into memory: machine code, initialized data

-y 13



e Other data: things like symbol names, debugging info
(DWARF), etc.

DWARF backronym = "“Debugging with Attributed
Record Formats”

e Section Header, used when linking:
has info on the additional segments in code that aren't
loaded into memory, such as debugging, symbols, etc.

-y 14



Linux Virtual Memory Map

e [he view a Linux program has of memory, note it doesn't
match Physical memory via CPU/OS magic

e We will go over virtual memory in much greater detall
in a future lecture

-y 15



Operating System

Exexcutable Info

Stack

v

shared libraries

vdso

mmap

v

A

Heap

BSS

Data

Text (Executable)

Null Guard Page

Oxffff ffff

OxbffFffff.

0x0804 8000

0x0000 0000

Operating System
|
Environment Strings

Cmd Line Arg Strings

Executable Name

Padding

ELF Auxiliary Vectors

Environment Pointers

Command Line Pointers

Cmd Line Arg Count
|

Stack
v

16



Program Memory Layout on Linux

e Text: the program’s raw machine code
e Data: Initialized data
e BSS: uninitialized data: on Linux this is all set to O.

e Heap: dynamic memory. malloc() and brk(). Grows
up

e Stack: LIFO memory structure. Grows down.

-y 17



Program Layout

e Kernel: is mapped into top of address space, for

berformance reasons

DANGER: MELTDOWN

e Command Line arguments, Environment, AUX vectors,
etc., available above stack

-y 18



Address Space Layout Randomization
(ASLR)

e For security reasons ASLR is enabled by default (you can
disable)

e Each run of a program the location of text / data / bss
/ heap / stack might be moved around

e This in theory makes it harder for attackers to find
functions/data they want to use

e Makes performance analysis hard as execution ends
up being less deterministic (yes, some code behaves

-y 19



differently depending on memory addresses)

20



e /lib/ld-linux.so.2

e loads the executable

Loader

21



Static vs Dynamic Libraries

e Static: includes all code in one binary.
Large binaries, need to recompile to update library code,
self-contained

e Dynamic: library routines linked at load time.
Smaller binaries, share code across system, automatically
links against newer/bugfixes

e Lots of debate about what is better: apt-get install vs
the app-store (flatpack, etc)

/Y 22



How Dynamic Linking Works

e Can read about how things load on Linux here:
https://lwn.net/Articles/630727/
https://lwn.net/Articles/631631/

e ELF executable can have interp section, which says to
load /lib/ld-linker.so first

e This loads things up, then initialized dynamic libraries.

e Links things in place, updates function pointers and
shared variables, offset tables, etc.
e Lazy-Linking i1s possible. Function calls just call to a

-y 23



stub that calls into linker. Only resolves the link if you
actually use it. Why is this a benefit (faster startup, not
load things not need). Does add indirection every time
you call.

e Can use “ldd /bin/Is" to see what dynamic libraries a
program IS using

24



How a Program is Loaded on Linux

e Kernel Boots
e init started
e init calls fork()
e child calls exec ()

e Kernel checks if valid ELF. Passes to loader
Possibly not ELF. Shell scripts, etc.

-y 25



e Loader loads it. Clears out BSS. Sets up stack. Jumps
to entry address (specified by executable)

e Program runs until complete.

e Parent process returned to if waiting. Otherwise, init.

-y 26



