
ECE 531/598 – Advanced Operating
Systems

Lecture 11

Vince Weaver

https://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 October 2023

https://www.eece.maine.edu/~vweaver

Announcements

• 531 course has been officially approved!

• Note: Midterm after Fall break, on 17th

• Homework #5 Posted

• Some notes:

◦ Review of C string handling, strcmp/strncmp and

strcpy/strncpy/strlcpy

◦ Be careful with the sizeof() operator, especially with

strings. sizeof(char[BUFSIZ]) vs sizeof(char *)

◦ Talk about software engineering best practices. Unit

1

tests for printf. Code commenting. Source code

versioning (git). We have been a bit lazy in this class.

2

HW#3 Review – Code

• Wasn’t as picky this time, but comment code!

• Serial port: most got value right

forgot to warn about floating point (say you wanted this

to be parameterizable)

Can you use floating point in kernel?

• printk: instead of /10, print remainder plus ’0’ instead

/16 (which converts to shift) and two cases. 0-9 same

as before, but A-F (you can just add ’A’-10 which I think

is 55)

3

Beauty of ASCII. Often complicated use of ternary

operator

technically upper vs lowercase %X vs %x

Can also use lookup table.

Be careful shifting, what if print 0xfffffff? Shift right?

Be sure unsigned! Also in C, shift right by 32?

• Be sure print hardware info (r1)

4

HW#3 Review – Questions

• Why serial port?

• What is parity? Why is it disabled?

Faster (one fewer bit per byte), much bigger

infrastructure to handle, not even that great (only detect

one bit flip). Not that critical for text. What would a

file transfer do? (checksum?)

Some systems might not support? True, but why don’t

they support it?

• inline asm lets you write code that’s not possible in C.

5

Also lets you bypass compiler (if you think you can do

better)

Don’t confuse it with the volatile keyword.

• Why no strtok()?

strtok() given a string and set of delimiters (like space,

tab) split up a line. So “led on” you’d get led, then run

it again and get “on”

string.h is the header, contains no code. Just describes

the routine in the C library.

• People seem to mostly have usb-serial going, though

occasional odd issues with MacOS

6

Processes

• What is a process?

• Your executable is loaded into memory and starts

executing

7

Process State

• Hardware state

◦ registers (r0-r14), PC, status register

◦ Floating Point / Vector? Performance Counters?

• Software/OS State

◦ pid (process id), uid (user id)

◦ Memory ranges, stack location, page tables

◦ Process accounting / time stats

◦ Open files (all open files, file offsets, etc)

8

Setting up the First Process

• We discussed how Linux starts userspace and starts

process 1, traditionally init

these days systemd. Can specify at kernel command line

• init becomes the parent of all userspace processes

• fork() is used to duplicate a process (make a copy of

its process info, only difference being new process id)

• exec() is used to replace the current process with an

executable from disk

9

Internally How do you Make a Process

create process() or similar

• Allocate memory for a new process structure

array or maybe linked list

• Set the process ID

• Allocate a stack

• Initialize the registers

• Called by fork(), but with the extra step that it copies

over the info from parent (including stack contents?)

10

Loading an Executable

load process() or similar

• Used by exec()

• Load executable from disk

• Parse the executable headers

• Allocate memory for machine code and data

• Allocate/zero the BSS memory

• Set up the program counter to point to entry point

11

Freeing a Process

delete process() or similar

• Used by exit() / exit group()

• Close all open files

• Free all memory

• Possibly let parent know and wait until acknowledged

• Pass exit/return value back to parent

• Remove process from list

12

Kernel Process Creation

• Involves assembly language trickery

• Kernel can create threads

◦ idle thread, pid 0, often does nothing (might halt/wfi

to enter sleep mode when nothing else running)

◦ Linux has a bunch of kernel worker threads it creates

to help out with things, that look like processes but

are parts of the kernel

• Kernel also does a bit of extra work to get init going

because it has to be started in kernel space before

13

switching to user space

14

Kernel Process Creation

• First set up user registers. How do you do this from

kernel/supervisor mode? Tricky, ARM created a special

“system” mode (user+permissions) to make this easier.

• Set up stack

• Set the SPSR and link register to act as if we were

returning from an exception, but with the return address

the start of our user program.

• Return

15

Multi-tasking / Multi-programming

• You could design a computer to only run one thing at a

time

• Much more convenient if you can run multiple programs

◦ If one program stops to wait for I/O, another can run

◦ You can have multiple tasks going, but given the

illusion they are all running at once

◦ Especially useful when only have one core to run on

16

Timer Interrupt

• Usually a timer interrupt is set up to trigger every so

often

• 250Hz on Linux

• If more than one process wants to run, the old one

is stopped and its context is saved, and a new one is

brought in to replace it

17

Context switching

• First time you get it working you get excited about

having an AAA program and BBB programing printing

ABABABA

18

Example Process Control Block
r14 the process LR

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0 PCB pointer points here (for stm instruction)

lr pc from process to return to

spsr

19

ARM Context Switch

r12 = new process PCB, r13 = old
STM sp ,{R0 -lr}^ ; Dump user registers above R13.

; ^ means get user register

MRS R0 , SPSR ; get the saved user status

STMDB sp , {R0 , lr} ; and dump with return address below.

; lr is the handler lr, pointing

; to pc we came from

LDR sp , [R12], #4 ; Load next process info pointer.

CMP sp , #0 ; If it is zero , it is invalid

LDMDBNE sp , {R0 , lr} ; Pick up status and return address.

MSRNE SPSR_cxsf , R0 ; Restore the status.

LDMNE sp , {R0 - lr}^ ; Get the rest of the registers

NOP

SUBSNE pc, lr, #4 ; and return and restore CPSR.

; Insert "no␣next␣process␣code" here.

20

Storing
ldmfd r13!,{r0-r3,r12 ,r14}

ldr r13 ,= PCB_PtrCurrentTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

stmia r13 ,{r0 -r14}^

mrs r0 ,spsr

stmdb r13 ,{r0 ,r14}

21

Loading
ldr r13 ,=PCB_PtrNextTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

ldmdb r13 ,{r0 ,r14}

msr spsr_cxsf ,r0

ldmia r13 ,{r0=r14}^ ; ^ means update user regs

ldr r13 ,= PCB_IRQstack

ldr r13 ,[r13]

movs pc,r14

22

The Scheduler

• If you have multiple processes ready to run, how do you

pick which to run next?

• The code that does this is called the scheduler

• This is a complex problem

• You want to run as fast as possible as it runs on every

timer tick

23

When to Schedule

• Task voluntarily yields (it has run out of work to do)

• If kernel blocks on I/O (Can be but to sleep instead of

busy waiting)

• If timeslice runs out

24

Scheduling Goals

• All: fairness, balance

• Batch: throughput (max jobs/hour), turnaround (time

from submission to completion), CPU utilization (want

it busy)

• Interactive: fast response, doesn’t annoy users

• Real-time: meet deadlines, determinism

25

Batch Scheduling

• First-come-first-served (what if 2-day long job submitted

first)

• Shortest job first

• Many others

26

Interactive Scheduling

• Round-robin

• Priority – “nice” on UNIX

• Multiple Queues

• Others (shortest process, guaranteed, lottery)

• Fair scheduling – per user rather than per process

27

Real-time Scheduling

• Complex, more examples in 471 or real time OS course

28

Scheduling Queues

• generally there will be a queue data structure holding all

processes ready to run

• There will also be wait queues, where programs waiting

on I/O can sleep

• If I/O comes in, the kernel will wake the process

by moving it to the ready-to-run queue so it can be

scheduled

29

Process States

• Running – on CPU

• Ready – ready but no CPU available

• Blocked – waiting on I/O or resource

• Terminated – might stick around until parent

acknowledges

30

The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

31

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs,

each get 20%). Per user? (5 users, each get 20%).

32

Per-process? Per-thread? Multi-processors? Hyper-

threading? Heterogeneous cores? Thermal issues?

33

Linux Scheduler Details

34

Threads

• Each process has one address space and single thread of

control.

• It might be useful to have multiple threads share one

address space

GUI: interface thread and worker thread?

Game: music thread, AI thread, display thread?

Webserver: can handle incoming connections then pass

serving to worker threads

Why not just have one process that periodically switches?

35

• Lightweight Process, multithreading

• Implementation:

Each has its own PC

Each has its own stack

• Why do it?

shared variables, faster communication

multiprocessors?

mostly if does I/O that blocks, rest of threads can keep

going

allows overlapping compute and I/O

36

• Problems:

What if both wait on same resource (both do a scanf

from the keyboard?)

On fork, do all threads get copied?

What if thread closes file while another reading it?

37

Common Thread Routines

• pthreads

thread init()

thread create() – specify function

thread exit()

thread yield() – if cooperative

38

Thread Implementations

• Cause of many flamewars over the years

39

User-Level Threads (N:1 one process many
threads)

• Benefits

– Kernel knows nothing about them. Can be

implemented even if kernel has no support.

– Each process has a thread table

– When it sees it will block, it switches threads/PC in

user space

– Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

40

kernel context switch)

– Can have own custom scheduling algorithm

– Scale better, do not cause kernel structures to grow

• Downsides

– How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

– Co-operative, threads won’t stop unless voluntarily give

up.

Can request periodic signal, but too high a rate is

inefficient.

41

– Can’t take advantage of multiple CPUs

42

Kernel-Level Threads (1:1 process to
thread)

• Benefits

– Kernel tracks all threads in system

– Handle blocking better

• Downsides

– Thread control functions are syscalls

– When yielding, might yield to another process rather

than a thread

43

– Might be slower

44

Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

45

Green Threads

• Managed by virtual machine

• Java

46

Misc

• Pop-up threads? Thread created for incoming message?

• adding multithreading to code?

How to handle global variables (errno?)

Thread-safe functions. Is strtok thread-safe? malloc?

any routine that might not be re-entrant

How are multiple stacks handled? One option each

thread gets own copy of global variables. This can’t

be expressed by default in C, you need special routines,

thread-local variables.

47

POSIX Threads (pthreads)
#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define NUM_THREADS 10

void *perform_work(void *argument) {

int value;

value = *((int *) argument);

printf("Thread␣with␣argument␣%d!\n", value);

return NULL;

}

int main(int argc , char **argv) {

pthread_t threads[NUM_THREADS];

int thread_args[NUM_THREADS];

48

int result , i;

/* create threads one by one */

for (i = 0; i < NUM_THREADS; i++) {

thread_args[i]=i;

printf("Main:␣creating␣thread␣%d\n", i);

result = pthread_create (& threads[i],

NULL , perform_work , (void *) &thread_args[i]);

if (result !=0) {

fprintf(stderr ,"ERROR!\n");

return -1;

}

}

/* wait for each thread to complete */

for (i = 0; i < NUM_THREADS; i++) {

/* block until each thread completes */

result = pthread_join(threads[i], NULL);

printf("MAIN:␣thread␣%d␣has␣completed\n", i);

if (result !=0) {

fprintf(stderr ,"ERROR!\n");

return -1;

}

}

49

printf("MAIN:␣All␣threads␣completed␣successfully\n");

return 0;

}

50

POSIX Threads (pthreads) programming

• Pass -pthread to gcc

• Thread management

– pthread create (thread,attr,start routine,arg)

– pthread exit (status)

– pthread cancel (thread)

– pthread attr init (attr)

– pthread attr destroy (attr)

– pthread join (threadid,status) – blocks thread

51

until specified thread finishes

– pthread detach (threadid)

– pthread attr setdetachstate (attr,detachstate)

– pthread attr getdetachstate (attr,detachstate)

– pthread attr getstacksize (attr, stacksize)

– pthread attr setstacksize (attr, stacksize)

– pthread attr getstackaddr (attr, stackaddr)

– pthread attr setstackaddr (attr, stackaddr)

• Mutexes (synchronization)

– pthread mutex init (mutex,attr)

52

– pthread mutex destroy (mutex)

– pthread mutexattr init (attr)

– pthread mutexattr destroy (attr)

– pthread mutex lock (mutex)

– pthread mutex trylock (mutex)

– pthread mutex unlock (mutex)

• Condition Variables – another way to synchronize

• Synchronization

53

Linux

• Posix Threads

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads – use clone syscall, SIGUSR1 SIGUSR2 for

communicating.

Could not implement full POSIX threads, especially with

signals. Replaced by NPTL

Hard thread-local storage

54

Needed extra helper thread to handle signals

Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processed, not clear they are subthreads

• NPTL – New POSIX Thread Library

Kernel threads

Clone. Add new futex system calls. Drepper and Molnar

at RedHat

Why kernel? Linux has very fast context switch

compared to some OSes.

Need new C library/ABI to handle location of thread-

55

local storage

On x86 the fs/gs segment used. Others need spare

register.

Signal handling in kernel

Clone handles setting TID (thread ID)

exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

56

Misc

• adding multithreading to code?

How to handle global variables (errno?)

Thread-safe functions. Is strtok thread-safe? malloc?

any routine that might not be re-entrant

How are multiple stacks handled? One option each

thread gets own copy of global variables. This can’t

be expressed by default in C, you need special routines,

thread-local variables.

57

IPC – Inter-Process Communication

• Processes want to communicate with each other.

Examples?

• Two issues:

getting the message across

synchronizing

• signals

• network, message passing (send, receive)

58

• shared memory (mmap)

59

Linux

• Signals and Signal handlers

Very much like interrupts

Concurrency issues much like threading

• Pipes

stdout of one program to stdin of another

one-way (half duplex)

ls — sort

pipe system call / dup

60

C library has popen()

• FIFOs (named pipes)

exist as file on filesystem

• SystemV IPC

shared memory, semaphores ipcs

• Just use mmap

• Unix domain sockets

Can send file descriptors across

61

• Splice – move data from fd to pipe w/o a copy? VM

magic?

• Sendfile. zero copy?

62

