
ECE 531 – Advanced Operating
Systems

Lecture 13

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 October 2023

https://web.eece.maine.edu/~vweaver


Announcements

• Homework #6 will be coming

• Midterm exam next class, Tuesday, October 17th

• Will try to have outstanding homeworks graded by then

1



Project Preview

• Project pdf posted to course website

• Can work in groups

• First deadline is project topic, due October 30th

• More details as we get closer

2



HW#5 Notes – Code

• Shell to userspace

• Avoid using sizeof() where you mean strlen()

3



HW#5 Notes – Questions

• Nonblocking getchar – what happens if in kernel mode

waiting for serial read() to finish and a timer

interrupt comes in?

• Why run in userspace? – mostly so kernel can protect

system from rogue apps

• Changing back to kernel mode – syscall, interrupt,

reset(?)

• What is an ABI

• Security implications of kernel writing to a user-supplied

4



pointer. Linux for example uses copy to user() that

checks to see if area pointed to actually belongs go user

process in question. Can we do that? Does the kernel

know what memory belongs to a process?

• System call of choice

manpages, from section “2”

many operate on file descriptors

chmod, inotify, exit, fork, truncate, futex, stat, wait

surprised no one said perf event open

5



HW#4 Notes – Code

• The clock / timer used might vary based on CPU

throttling or scaling, should use one of the many

other timers available. Which one? They aren’t all

documented well. Might make a good project topic.

6



HW#4 Notes – Questions

• FIQ vs IRQ difference? FIQ banks some registers, so is

faster (no saving), higher priority, only one so don’t have

to search for source.

• BASIC PENDING bit 19 is interrupt 57 which is UART.

Manual is unclear, says it’s in the GPU interrupt table

but that’s probably a typo.

• How to change modes? Write to the mode field of CPSR

register.

Can either manually change the mode in the CPSR

7



register (previous notes) or in theory the CPSID type

instructions can be used to enable interrupts but also to

change modes.

Can we trigger a hardware interrupt to get us into the

hardware interrupt mode?

What about jumping directly to the interrupt vector?

• Subtract 4 because it offsets by four when saving the

PC. Historical reasons? Probably artifact of pipelined

processor where instruction mid-pipeline before interrupt

comes in and PC already incremented. Computer

architecture frozen in spec and then you’re stuck with it.

8



HW#3 Notes – Code

• Wasn’t as picky this time, but comment code!

• Serial port: most got value right

forgot to warn about floating point (say you wanted this

to be parameterizable)

Can you use floating point in kernel?

• printk: instead of /10, print remainder plus ’0’ instead

/16 (which converts to shift) and two cases. 0-9 same

as before, but A-F (you can just add ’A’-10 which I think

is 55)

9



Beauty of ASCII. Often complicated use of ternary

operator

technically upper vs lowercase %X vs %x

Can also use lookup table.

Be careful shifting, what if print 0xfffffff? Shift right?

Be sure unsigned! Also in C, shift right by 32?

• Be sure print hardware info (r1)

• Be careful copying code from other places! A lot

of the hex printing code is a bit obscure but a few

implementations were almost byte-for-byte same as

others. Try doing things yourself, not just doing a

10



google search and cut-and-paste (or using an AI, or

copying your friend, or whatever)

11



Midterm Review

• Closed book/notes/computer but can bring one piece of

notebook paper (front only) with notes on it

• Questions will be similar to those from homeworks

• Topics

◦ Benefits of an OS / Downsides of an OS

◦ Serial communication: why are we using it? What does

9600 7E1 mean? How does hardware and software flow

control work?

◦ Boot process (firmware/bootloader/OS), how it works

12



on Pi

◦ MMIO interface: accessing hardware registers. Using

inline assembly, the different starting addresses for I/O

on various Pis. Using the interface to blink GPIOs

◦ Interrupts: how they switch processor mode, why FIQ

is different from IRQ mode. How to switch back from

userspace.

◦ System calls

◦ ABI

◦ Context switch / Scheduler. What is saved? Why

does it have to be fast?

13



◦ Note: no memory or Virtual Memory as we haven’t

done that homework yet

14



Brief History of Memory Handling in
Operating Systems

15



Mono-Programming

• Simple mono-programming: just OS and one program in

memory at once (like DOS)

• Linear physical memory, assume you have all (or maybe

up to a limit set by OS)

• Hassle of DOS 640k low memory, games

16



Fixed Multi-Programming

• Multiprogramming: let you run multiple tasks at once.

• Fixed Partitions of memory available. Jobs queued.

When spot frees up job can run. Can have complex

scheduling rules out which size and priority to give to

jobs. Older mainframes (OS/MFT) used this.

• Relocations a problem

• Memory protection. Permissions on pages.

17



• Solution to both protection and permission in segments

(with base offset and range that are valid to access)

18



Swapping

• Timesharing systems. All jobs not fit in RAM?

• Swapping: bring in each program in entirety, run it a

while, then when done writing all back out to disk.

• Paging: virtual memory.

19



Memory Allocation in Linux

20



Buddy Allocator

• Used by Linux

• Pick a low size, say 4k, and a high size, say 1MB

• When allocate, round up to the next power of two

• Search for free area that size. If not, scale up. If you

find one, split it into chunks until you reach the size

being looked for. Give it.

• When freeing, not only free but see if neighboring blocks

also free, if so, re-join them to bigger sized memory.

21



Buddy Allocator example

• Want to allocate 7000 bytes

• Gets rounded up to power of two, 8192 (8k)

• Look for free 8k block. If found just hand it out. If not,

bump to 16k try again

• No 16k free, bump to 32k

• 32k found! Break it up to four 8k chunks, hand out one

• Later if that 8k chunk is freed, if nearby chunks are also

free, merge them together to create larger chunk

• This is designed to limit fragmentation

22



Linux – SLAB/SLOB/SLUB

• Have cache of commonly allocated structs

• Don’t completely clear/free them when done, but leave

them pre-initialized

23



Linux – dynamic allocation

• Most code will try to do things on stack if possible

• Kernel stacks are small (why? Need to be contiguous,

fragmentation, etc)

• Back in the day they tried to fit in one 4k page, not

always work

8k. 16k now?

• Part of the problem was large structs being allocated,

but especially deep callchains. Sometimes be fine

in common case but then some obscure thing calls

24



filesystem/network/network-card/etc and it all adds up

• Can allocate memory

◦ kmalloc()

◦ get free pages()

◦ vmalloc() – allocated virtual memory, avoids

fragmentation

25



Linux – Memory Zones

• Not all memory is equal

• Not all is in reach of DMA

• 32-bit processes can’t access memory above 4G

• Normal vs HIMEM (historical on Linux?)

• NUMA – sometimes want allocations to be close to CPU

core

26



Linux – Memory stats

• /proc/buddyinfo

• /proc/zoneinfo

27


