
ECE 531 – Advanced Operating
Systems

Lecture 15

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 October 2023



Announcements

• HW#6 will be posted

• Midterms will be graded by Thursday

1



Notes on Waitqueue from Last Time

• We’ll overexplain things a bit

2



Process Control Blocks

• Each process has some sort of process control block

structure that holds all the info in a process

• There is a “processes” linked list that can be iterated by

the OS to find processes

◦ The scheduler will do this

◦ The OS might have other reasons to look for a process

struct (killing it, etc)

3



Process Control Structure

Here are the things you might find in a PCB, others are

possible. This list is from vmwOS

• Saved State

◦ Register saved state (for context switch, r0..r15, spsr)

◦ Kernel saved state (maybe needed to restart process

blocking in I/O)

• Linked list pointers (note, fancy kernels might use better

data structs)

◦ Next/Prev Process linked list pointers

4



◦ Waitqueue linked list pointer

• Process info

◦ status (valid/running)

◦ time accounting (user/kernel)

◦ pid – process id

◦ name – for printing

• Parent info

◦ exit value, parent pointer – when program ends it

needs to stick around until parent acknowledges it and

gets the exit value

• Memory info – useful for virtual memory during page

5



faults

◦ stack pointer, size

◦ text pointer, size

◦ data pointer, size

◦ bss pointer, size

• Open file info

◦ open files array

◦ current working directory

6



Open Files Array

• Each process tracks its open files

• Indexed via the filedescriptor

• This is UNIX/Linux so “everything is a file”

• Offset/inode/count/flags/name

• Also VFS struct with function pointers to the driver

responsible for I/O

◦ read()

◦ write()

◦ llseek()

7



◦ getdents()

◦ ioctl()

◦ open()

8



Wait Queue

• There is often separate waitqueue linked lists that can

hold everything waiting on a certain kind of I/O

• The process itself doesn’t move, it just is added/removed

from these lists as needed

• Often waitqueue is per device, so you’ll have a serial

one, a disk one, a network one, etc

9



Wait Queue Example – Console Code
(vmwos)

• your code read(stdin,buffer,size)

• syscall looks up file descriptor, sees fd maps to console

• calls console read()

• console driver has a buffer that gets filled in the

background by serial port data

◦ if more data avail then requested, return that many

bytes

◦ if less data avail then requested, return all available

10



◦ if no data available, put on waitqueue for console data

• next time serial port sends more data to console, it will

put in buffer, but also wake up everyone in waitqueue

• that marks each process is READY and then removes all

from queue

11



HW#6 Troubles

• Memory detection in device tree changed in the 2020-

2021 time frame

Found someone reporting issue 2 years ago online (was

me)

• Lots of corner cases, especially on machines with more

than 1GB handled properly (non-contiguous, cheat for

now)

• Other issue was just general Pi4 working, mostly

interrupts

12



• Also issue with Flattened Device Tree breaking with GCC

12 which I think most of the cross compilers are

13



Virtual Memory Wrapup

14



Quick run-through, the path of a load

• OoO, load buffer, etc

• VIPT. So on access it looks up the physical tag in TLB

while reading out the tags from each way with the index.

Also keep in mind MESI is going on at this level.

• If tag from TLB matches a tag from cache, hit! Good!

Cache hit!

• If tag in TLB but not in cache, cache miss.

• If tag not in TLB, TLB miss. Won’t know if cache hit

until later.

15



• Now let the hardware walk the page tables.

• If hardware finds the page, great! Return it back up to

the TLB

• If hardware can’t find the page, time to get the Operating

System involved. Page fault.

• OS has a list of what should be in memory where (from

the executable). Typically these are demand-loaded

◦ Text/code — read from disk

◦ Data — read from disk

◦ BSS — allocate zeros

◦ Stack — if near top growing down, auto-grow

16



◦ Heap — similar to stack

◦ Shared page — could already be in memory (shared

lib?) Just need to point to it.

◦ Zeros — just have one page of zeros you can point to

◦ Paged out to disk — have offset in page file, need to

load it

◦ What if page is invalid/not part of process? segfault!

• Time to bring in the page! Need to find room in Physical

RAM. If no room, need to make room. Possibly paging

out to disk (this is what LRU/dirty bits are used for).

• What kind of issues come up when low on RAM and

17



constantly paging same pages in and out (thrashing?)

• Page now in physical RAM, time to go backwards.

Update the page table

• Fill in the TLB. Return to memory.

• If page fault occurred, usually re-execute the instruction.

• Issues

◦ Could you have race where you re-execute it and the

page had gotten swapped out again?

◦ Can we page out the page tables? What can go wrong

there? Double faults? How many nested page faults

18



Aside: what if you have unused bits at top?

• People use them, causes problems later. See

M68k/MacOS, IBM 390, ARM1

• AMD64 canonical addresses to avoid this (top bits have

to be all zeros or all ones)

• Though recent systems support this, have a special mode

to “ignore” top bits

◦ ARM64 Memory Tagging Extension (MTE), Top Byte

Ignore (TBI)

◦ AMD64 Upper Address Ignore (UAI)

19



◦ Intel Linear Address Masking (LAM)

20



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

21



Transparent Huge Pages

• Compromise: multiple page sizes.

Complicate O/S and hardware. OS have to find free

blocks of contiguous memory when allocating large page.

• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

22



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Linus Torvalds hates this.

• Hit an upper limit around 16-32GB because entire low

4GB of kernel addressable memory fills with page tables

23



ARMv7 Virtual Memory

• ARM virtual memory is *really* complicated

• It’s a lot more complicated than x86

• TODO, write this up better

24



ARMv7 Page Tables

• ARMv7 supports two pagetables, one for kernel-type

thing that’s fixed and always there, one for process that

you can swap in/out

• Pagetable has lots of fields

◦ Address (31-20)

◦ NS - not secure

◦ nG - not global

◦ S - shared

◦ AP[2:0] access permissions (kernel r/w, kernel r/o,

25



anyone r/w, anyone r/o, no access)

◦ TEX - caching (cacheable, no cache)

◦ Domain - up to 16 domains with different checking

permissions

26



ARMv7 VM on our OS

• Our OS we set up a 1:1 Virtual to Physical ”Section”

Mapping with 1MB pages

• Set up a pagetable, 4k table that is 14-bit aligned

• Setup pagetable, point to it

• Setup domains (want 0x55555555 not 0xffffffff or won’t

check)

• Flush TLB/Caches?

• Enable MMU

27



ARMv7 Caches

• Caches are small, fast memories that mirror parts of

DRAM for speed

• Important for performance, really hard to set up on

ARMv7

28


