
ECE 531 – Advanced Operating
Systems

Lecture 16

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 October 2023



Announcements

• HW#6 was posted

1



Hand Back and Go Over Midterms

• Average was an 83

2



Describe Project Topics

• Don’t forget due soon

• There’s a list at the end of the project pdf

• Note that especially in this class it can be hard to judge

difficulty. Things that might sound easy can turn out

not to be.

• Note that “this was much harder than we thought and

we only got it partly done” can be an OK result as long

as you document along the way what you did and what

parts ended up being difficult

3



Operating System without Virtual Memory

• Can you have an operating system without Virtual

Memory?

• Historically, yes, many did (original UNIX, MacOS,

Win3.1, etc)

• Linux typically relies on MMU (virtual memory).

• uCLinux is a version of Linux for micro-controllers

without VM

• Our OS in the homework is similar in design to this.

4



Starting a Process on Linux/UNIX style
operating systems

5



fork()

With VM you can run fork()

• pid t fork(void);

• Makes complete copy of parent, only pid is different

• Return value is pid of child (in parent) or 0 (in child)

• On VM systems does this with Copy-on-Write (COW)

magic

6



vfork()

Can’t fork w/o OS, instead do a vfork()

• vfork() makes a new process (PCB) but doesn’t allocate

memory, the child runs with the parent’s memory/stack

• The parent is put to sleep until the child finishes

• the *only* thing the child is allowed to do is either call

exec or exit() (not even plain exit() as that does various

cleanups that could break the parent)

7



vfork() on ECE531 OS

• Complicated

• Allocates new process with process create()

• Copies current process block over, including stack state

(Did I mention, each process has own kernel stack, with

the PCB taking up the top part of it)

• Update the pid values, parent info, also increment file-

in-use counts

• point kernel stack info to that of child

• put child in process linked list

8



• put parent to sleep and force a reschedule (then return

pid of child)

• child returns 0, and is *only* allowed to execve() or

exit()

9



Loading an Executable

10



Executable Formats

• ELF is complicated for what we need and hard to parse

• HW#6 uses bare executables made with objcpy but

that has limitations, the main one being you can’t use

BSS variables

• A good compromise is bFLT

11



Flat File Format

• http://retired.beyondlogic.org/uClinux/bflt.htm

• “bFLT” or 0x62, 0x46, 0x4C, 0x54

• struct flat_hdr {

char magic [4];

unsigned long rev; /* version */

unsigned long entry; /* Offset of first executable instruction

with text segment from beginning of file */

unsigned long data_start; /* Offset of data segment from beginning of

file */

unsigned long data_end; /* Offset of end of data segment

from beginning of file */

unsigned long bss_end; /* Offset of end of bss segment from beginning

of file */

/* (It is assumed that data_end through bss_end forms the bss segment .) */

12



unsigned long stack_size; /* Size of stack , in bytes */

unsigned long reloc_start; /* Offset of relocation records from

beginning of file */

unsigned long reloc_count; /* Number of relocation records */

unsigned long flags;

unsigned long filler [6]; /* Reserved , set to zero */

};

13



bFLT documentation

• Spec isn’t worth much

Your best bet is various Wikis and blog postings (TI-

nspire?)

• Actual code more useful

• fs/binfmt flat.c in Linux kernel source.

14



Building bFLT

• Making the binaries hard.

• Not just a simple matter of telling gcc or linker (would

need a linker script, as far as I know doesn’t exist. Good

project idea?)

• There was an “elf2flt” project but non-standard and hard

to find a working version

• I wrote my own for this class. It broke recently when the

cross compiler moved from gcc-7 to gcc-12, trying to fix

it for next homework

15



exec()

• exec() is the syscall that loads a binary

• We use execve(char *pathname, char *argv[], char *envp[])

• First argument is the full path of the executable

• The second is the command line argument structure.

(TODO: diagram).

◦ This is an array of pointers (with the last entry NULL)

that point to each command line argument.

◦ It’s up to the caller to set this up properly, often the

shell

16



◦ Remember argv[0] is the name of the program

• The third argument is similar to the command line args,

but for environment variables

17



Loading a flat binary (531 OS)

• execve()

• Remember, exec() overwrites current process so the

process has already been allocated and put in the process

list

• TODO: should check permissions, executable bit

• read header — note big-endian so need ntohl()

• parse header, check magic number (falls back to raw

executable if not bFLT)

• parse header, get sizes

18



• allocate stack

• allocate area for text/data/bss

• read data from disk into allocated space

• relocate the addresses

• set the name

• construct the command line arguments (these were

passed to execve, but we need to copy to final location

on stack)

• set up register save state to appear as if we had a context

switch

saved sp should be allocated stack pointer just after

19



argv

saved pc should be entry point (?)

r0 = argc, r1 = argv

20



PIC/PIE – Position Independent Code

• Without VM, we can’t know in advance where our code

is loaded

Something else might already be there

• Instead of loading from absolute address, uses an offset,

usually in a register or PC-relative.

• gcc has an option -fPIC to generate

21



Relocation

• List of offsets to pointers

• PIC compiles things with zero offset

• At load time the pointers are fixed up to have the load

address

• Separate relocation for GOT (global offset table) which

is a list of pointers at the beginning of the data segment,

ending with -1

22



Flat Shared Libraries

• Like mini executables, can have up to 256 of them

• Libraries loaded in place, then the callsites are fixed up

to have the right address.

• Also at start time the various library init routines are

called

23



Execute in Place

• On embedded system, might want our read-only text

segment in ROM

• Why? Save space, save copying.

• Why not? ROM often slow, more complicated binaries

(data not follow text)

24



Memory Allocation w/o Virtual Memory

• sbrk() doesn’t work (due to fragmentation can’t have an

auto-growing heap)

• can use mmap() to allocate chunks

• overhead

25



Other Things our OS Does

26



Create an Idle Task

• Can fake up a process but it lives in kernel not userspace

• What does the system do if no jobs are ready to run?

• wfi vs msr (ARM1176 wfi is a nop)

• What happens if forget to setup a stack for the idle

task? Not an issue unless you try to add a printk to

track down a problem

27



Scheduler / Idle Thread

• How does the scheduler work?

• Simple, nothing fancy. There’s a doubly linked-list of all

processes and when a timer interrupt happens the list is

walked to find the next one that’s runnable.

• What if none available? Then run the idle thread.

28



Waitqueues

• See last lecture

• If you are sleeping (because of a vfork) or waiting on I/O

(waiting for keypress) you get put to sleep and put on

a linked-list waitqueue. Then when I/O comes in, you

are woken up, removed from the queue, and marked as

ready.

• This is tricky as in theory you are sort of sleeping in the

kernel and that’s how we implement it, so we need to

save our kernel register state as well as the user space.

29



There’s probably better ways to do this.

30



Aside on the Shell

• TODO: diagram

• Shell in main loop reads string and parses

• If not built-in command, assume you’re running an

executable

• Run vfork() so now two copies of shell

• In the child, try execve() on the program name

◦ If it works, we’ve started a new program

◦ If it fails, exit()

• By default this would launch a program in the

31



background, how do we instead wait for the child to

finish? waitpid()

• Then return to reading from loop

32



waitpid()

• waitpid() call will block waiting for child to finish

• When children run exit() they wait until parent has

acknowledged their return value before completely

exiting/freeing resources

• How do you acknowledge background tasks (started

with ampersand in bash-type shells)? Non-blocking

waitpid(NOHANG) needs to be run occasionally to reap

finished children

33



Other Process Terms

• Orphaned children, what happens when parent dies?

In theory init inherits them

• Might you intentionally orphan a child?

How do you start background daemons?

• Zombie processes, ones that for whatever reason you

can’t kill (often they are stuck waiting for the kernel to

do something that will never finish, for example reading

from a disk that was removed)

34


