
ECE 531 – Advanced Operating
Systems

Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 November 2023



Announcements

• Don’t forget HW#6

• Homework #7 will be posted soon hopefully

• Project topics due

Be sure to e-mail. This is worth points!

1



Device Drivers

• So far we discussed talking to kernel via syscalls

• How do we talk to hardware from userspace without

adding lots of custom syscalls?

• i2c, gpio, etc

• On Linux/UNIX have device drivers that you do file I/O

on

Everything is a File!

2



Device Type – Block Devices

• Read chunks of data with random access

• Can seek file location back and forth

• open/read/write/lseek

• Examples: disks, ramdisk, storage

• Filesystems often go on top

3



Device Type – Character Devices

• Read a sequence of characters incoming, write outgoing

• Can’t seek around in this stream

• open/read/write/ioctl

• Examples: serial, i2c, spi, gpio

4



Device Nodes – Accessing Devices

• Access by opening special files (often in /dev) and doing

I/O

brw-rw---- 1 root disk 8, 1 Oct 6 10:07 /dev/sda1

• Node has a major / minor number which indicate what

type of device and which one (if multiple supported)

• Also that b means “block”

• Device nodes are created with “mknod” and make a

special device node in filesystem

mknod sda b 123 45 or similar

5



• When you open a device node, kernel looks up who owns

it in table and maps this to proper device driver

6



Auto-creation of Device Nodes (Linux)

• Manual creation of nodes

◦ Old days if you added new device had to manually add

node

◦ Otherwise you distribution could just create every

possible node under /dev

◦ Previously: who maintained the list? Just text file in

linux-kernel?

◦ Also hit limits: only 16 hard drive partitions?

◦ Something automatic preferable

7



• Automatic creation

◦ First attempt on Linux was devfs (flamewar)

◦ udev/systemd now will auto-create these

◦ Makes life easier

8



Device Workflow

• At boot, kernel sets up all devices

• The init() method for the device is called, devices

“register” which device node they’ll respond to

• User opens device node under /dev

• Kernel creates file descriptor entry

• This contains struct with info but also pointers for

various methods like read/write/ioctl/close

• When you read/write on an opened device, the kernel

used the fd to map your read call to a device read call

9



in the device driver in the kernel

10



Other Topics

• Block devices – optimizing

◦ prefetch

◦ block scheduling (what happens when multiple

processes reading from same block device. SSD

random access not matter, old days spinning disk not

efficient to seek around)

• Disk cache – disk access slow. How do we make slow

things faster? Cache? Use unused RAM for this?

• Page cache?

11



Disk performance

• Traditionally a lot of this came down to hardware.

• Spinning rust disks; head movement, cylinders/sectors.

Reading consecutive faster, random access bad

(millisecond bad)

More complicated, fancy disk interfaces and embedded

processors. Large caches (why can that be bad), shingled

disks?

• Much of this goes away with flash disks, but still emulate

old disk interface

12



• Name lookup can also be slow.

13



Disk Block Size

• Way too much overhead to have single byte granularity

• For a long time this was 512bytes/block

Way too many for huge disks so disk drive companies

pushing for 4k (but trying to remain backward

compatible)

• Filesystems can allocate with larger blocksize.

• Large blocksize good: fewer blocks to track for each file

• Large blocksize bad: waste space on small files

14



531 OS Device Drivers

• We have some device drivers, but not the common

interface for them yet

• We don’t even have storage for the device nodes to live

15



531 Storage / Block Device

• Need somewhere to store data that we can load

• block device, series of blocks

• Disk, but SD card drive complicated to write

16



531 Storage / RAM disk

• How about RAM disk? Treat region of RAM as if it

were a disk, can read/write blocks of data

• Can load data for block device along with kernel (tacked

on)

• This is common thing to do with OS, sometimes called

initrd

17



Using a Block Device

• We can get blocks of data, but how do we find the

blocks that we want...

18



Filesystems

• Why use a filesystem?

◦ Why not just open a disk raw, and remember that your

senior project is at offset 1,000,000 and your jpegs all

start at offset 4,005,434?

◦ A good use of abstraction. Naming is useful.

19



What is a file?

• In Unix is just a stream of bytes. That’s not necessarily

the only possibility

• Old systems files were just 80-column punch card images.

• Windows also has streams (with colon after name)

MacOS has forks (what appears to be a file is more like

a directory)

20



Where does a file live?

• Everything in one place / root directory?

• Hierarchical? Directories?

• Database?

• In the Cloud?

21



Why not just load everything into memory?

• Too big? Share with other processes?

• Persistent across reboots?

22



Filesystem File Types

• Regular files

• Directories

• Char devices, block devices

• Links (hard, soft)

• FIFOs

23



Filesystems metadata – Filenames on UNIX

• UNIX has few rules, makes some people unhappy

• Case sensitive, so Bob.txt bob.txt and BOB.TXT all

different files

• Anything that is not / or NUL.

• What about ”-rf” or * or ?

What happens if you “rm *” and it matches -rf?

• What about linefeeds, spaces, backspaces?

• What about foreign chars? Emoji?

• What about console escape sequences?

24



Filesystems metadata – Other OSes

• Most other OSes have stricter rules which makes sharing

files (network share, checking out from git, etc) fun

• Windows

◦ more restrictions. Thins like CON and COM and PTR.

◦ Uses backslash for directory separation (why?)

• DOS famously had 8.3 filenames

Then weird compatibility came in with Win95 long

filenames

• MacOS

25



◦ used to use : as directory separator.

◦ Tries to normalize unicode?

◦ Case-insensitive?

• Case sensitive? Bob or bob or BoB?

What does it mean to be capital/lowercase? i18n

26



Filesystems metadata – attributes

• Permissions (read, write, execute)

• Owner (user, group)

• Access time (atime, ctime, mtime)

• Current size

• Locks

• Hidden

• Immutable / System

• Extended attributes / capabilities

27



File Related Operations / System Calls

• open() – opens file. Can take a large number of

arguments, some of which call into others below

most problems come when writing, as you can over-write,

append to end, truncate, etc

• creat() – if file doesn’t exist, create it (story of missing

e)

• unlink() – delete file (we’ll get into how it works later)

• close()

• read()

28



• write()

• lseek() – seek to file position

• stat()/fstat()/lstat() – get info on files

• rename() – rename (or move) a file

• mmap() — Memory Map

29



File Descriptors

• When open a file or object, get a number that indexes

into a table, each referring to a file.

• Low-level syscalls mostly operate on file descriptors

30



Directories/Folders

• Root directory

• Hierarchical

• Path names. /, ., ..

• Operations

◦ opendir()

◦ closedir()

◦ getdents() – old way of doing things, use readdir()

instead now

◦ readdir()

31



Trouble with Readdir

• reading a directory is hard

• Ideally you’d read all entries atomically in one go

• If you don’t, how do you restart/ask for the rest?

What happens if someone is adding/deleting files at the

same time

Can your program handle files reported twice or not at

all?

• How do you know how big to make the buffer?

• One way is to just keep trying buffers until it works

32



• This is still a bit of a mess on Linux, especially when

dealing with filesystems that have no inherent idea of

file order (old interfaces forced there to be a canonical

order so you could restart at arbitrary position)

33



Low-level Disk Layout

• Often a MBR (master boot record) and partition table

• Disks divided into partitions

◦ Why partitions?

◦ Split up system (/, /boot, /usr, /home)

◦ Why is boot separate? Smaller so boot loader can

access, maybe a different fs type.

◦ Dual-booting operating systems

◦ Swap partitions

34



Filesystems – Organization

• A header containing master info (often called the

superblock)

• Some sort of free list, saying what areas are free (bitmap

or pointers)

• inodes, an array of data structures containing master

info for each file (and if file is small, contents of file)

• Directory info: root directory entry, directory layout

• Actual file data

35



Filesystems – System Calls

• “mount” to put it in the proper place,

• “statfs” gives info on filesystem

(including disk space, df)

36



File Layout – Various Ways to Do It

• Contiguous.

◦ Files in consecutive blocks.

◦ Simple. Fast to read (just read X blocks)

◦ Has fragmentation problems like with memory alloc.

◦ What happens if append to file?

◦ Ever used? read-only, CD-ROMs

• Linked list.

◦ Inode points to first part, each block points to next.

◦ No fragmentation, seeking through file involves lots of

37



reads.

◦ Waste part of block size for next pointer

• File Allocation Table

◦ Like linked list, but the links are stored in a separate

area on disk

◦ Can also instead have the pointers in one single block,

each pointing to next block.

◦ Whole thing has to be in mem at once. Makes it faster

(no need to do lots of disk reads on seek) but problem

if structure is big

• Inode table

38



◦ Special structure named inode that holds file attributes

and list of blocks.

◦ If need more blocks then fit, last one points to another

block with more.

◦ Only has to be in memory if file is open

• Database

◦ Treat disk as if it were a database, with the files the

info you want to retrieve

39


