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Announcements

• Discuss HW6 lack of testing harness

• HW6 trouble attaching assignment: usually means

there’s executable code. make clean apparently wasn’t

getting rid of all the executables
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“Traditional” UNIX-style Filesystem

2



Ext2 FS – History

• Linux originally used “minixfs” but it had 16-bit offsets

and max size limit of 64MB and filename of 14 chars

• Replacement: ext, but still limits

• Then ext2 and xiafs

• ext2 by Rémy Card

• later extended to ext3 (with journaling) and ext4

• Still issues with things like y2038 bug
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Ext2 FS

• Originally supports 4TB filesystem, 2GB file size

• All structures are little-endian

Learned hard way not specifying, Atari disk images not

work on x86

• Block size 1k-4k (for various reasons it’s complicated on

Linux to have a block size greater than the page size)

(also, does blocksize have to be power of 2? Some

CD-ROMs had blocksize of 2336 bytes)

• 5% of blocks reserved for root. Why? Still needed?
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Overall Layout

• Low-level blocks, grouped together in block groups

• Boot sector, boot block 1, boot block 2, boot block 3
Boot

Block

Block Group

        0       N

Block Group...

Super

Block

Group

Descriptors Bitmap

Data Block

Bitmap

Inode Inode

Table Data Blocks

• Block group: superblock, fs descriptor, block bitmap,

inode bitmap, inode table, data blocks
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Block Group

• A bitmap for free/allocated blocks

• A bitmap of allocated inodes

• An inode table

• Possibly a backup of the superblock or block descriptor

table

• Effort is made to make files be allocated in same block

group as their dir entry.
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Superblock

• located at 1k offset, 1k long

• Copies scattered throughout (fewer in later versions)

• Info on all the inode groups, block groups, etc.

• Copy in each block group, but typically only 1st one

used
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Superblock Layout
Offset Size Description

0 4 Number of inodes in fs
4 8 Number of blocks in fs
8 4 Blocks reserved for root
12 4 Unallocated blocks
16 4 Unallocated inodes
20 4 block num of superblock
24 4 block size shift
28 4 fragment size shift
32 4 blocks in each group
36 4 fragments in each group
40 4 inodes per group
44 4 last mount time
48 4 last write time
52 2 mounts since last fsck

Offset Size Description

54 2 mounts between fsck
56 2 ext signature (0xef53)
58 2 fs status (dirty or clean)
60 2 what to do on error
62 2 minor version num
64 4 time of last fsck
68 4 interval between fsck
72 4 OS of creator
76 4 major version number
80 2 uid that can use reserved blocks
82 2 gid that can use reserved blocks
84 4 first non-reserved inode
88 2 size of each inode
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Block Group Descriptor Table

• Follows right after superblock

offset size Description

0 4 address of block usage bitmap
4 4 address of inode usage bitmap
8 4 address of inode table
12 2 number of unallocated blocks in group
14 2 number of unallocated inodes in group
16 2 number of directories in group
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Block Tables

• Block bitmap

◦ bitmap of blocks (1 used, 0 available)

◦ block group size based on bits in a bitmap.

◦ if 4kb, then 32k blocks = 128MB.
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Inode (index-node) Tables

• Inode bitmap – bitmap of available inodes

• Inode table

◦ all metadata (except filename) for file stored in inode

◦ Second entry in inode table points to root directory

◦ inode entries are 128 bytes.

• Can you run out of inodes before you run out of disk?
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Inode Layout
offset size desc

0 2 type and permissions
2 2 userid
4 4 lower 32 bits of size
8 4 last access time (atime)
12 4 creation time (ctime)
16 4 modification time (mtime)
20 4 deletion time
24 2 group id
26 2 count of hard links
28 4 disk sectors used by file?
32 4 flags
36 4 os specific

40 - 84 direct pointers 0 - 11
88 4 single indirect pointer
92 4 double indirect pointer
96 4 triple indirect pointer
100 4 generation number (NFS)
104 4 extended ACL
108 4 ACL (directory) else top of filesize
112 4 address of fragment
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Inode Finding Blocks
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Directory Info

• Superblock links to root directory, (usually inode 2)

• Directory inode has info/permissions/etc just like a file

• The block pointers point to blocks with directory info.

• Initial implementation was single linked list. ext3 and

newer use hash or tree.

• Holds inode, and name (up to 256 chars). inode 0 means

unused.
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type size

inode of file 4

size of entry 2

length of name 1

file type 1

file name N
• Hard links – multiple directory entries can point to same

inode

• . and .. entries, point to inode of directory entry

• Subdirectory entries have name, and inode of directory
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How to find a file

• Find root directory

• Iterate down subdirectories

• Get inode
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How to read an inode

• Get blocksize, blocks per group, inodes per group, and

starting address of first group from the superblock

• Determine which block group the inode belongs to

• Read the group descriptor for that block group

• Extract location of the inode table

• Determine index of inode in table

• Use the inode block pointers to read file

17



Ext3

• Compatible with ext2

• Htree instead of linked list in directory search

• online fs growth

• Journal

metadata and data written to journal before commit.

Can be replayed in case of system crash.

18



Ext4

• Filesize up to 1Exabyte, filesize 16TB

• Extents (Rather than blocks) , an extent can map up to

128MB of contiguous space in one entry

• Pre-allocate space, without having to fill with zeros

(which is slow)

• Delayed allocation – only allocate space on flush, so data

more likely to be contiguous

• Unlimited subdirectories (32k on ext3 and earlier)

• Checksums on journals
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• Improved timestamps, nanosecond resolution, push

beyond 2038 limit
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Why use FAT over ext2?

• FAT simpler, easy to code

• FAT supported on all major OSes

• ext2 faster, more robust filename and permissions
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Advanced Filesystems
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btrfs

• Butter-fs? Butter-fuss? B-tree fs?

• Started in 2007 at Oracle (by Chris Mason, who had

worked on Reiserfs)

• Address scaling

• Lack of pooling, snapshots, checksums in Linux

◦ Pooling – preallocate resources so they can be quickly

handed out when needed

◦ Snapshots – instead of taking full backup (long) just

take a snapshot of current state and then keep using
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filesystem

◦ Checksums – mathematically check to make sure

values in files are what they should be

• 264 = 16 Exabyte file size limit (Linux VFS limits you to

8EB)

• Space-efficient packing small files

• Dynamic inode allocation

24



btrfs details

• Primary data structure is a copy-on-write B-tree

◦ B-tree similar to a binary tree, but with pages full of

leaves

allow searches in logarithmic time

◦ Btrees also used by ext4, NTFS, HFS+

◦ Goal is to be able to quickly find disk block X

◦ Copy-on-write when writing to file, rather than over-

write (which is what traditional filesystems do)

◦ Copy on write. When write to a file, old data not
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overwritten. Since old data not over-written, crash

recovery better

Eventually old data garbage collected

• Data in extents

• Copy-on-write

• Forest of trees:

◦ sub-volumes

◦ extent-allocation

◦ checksum tree

◦ chunk device

◦ reloc
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• On-line defragmentation

• On-line volume growth

• Built-in RAID

• Transparent compression

• Snapshots

• Checksums on data and meta-data, on-line data

scrubbing

• De-duplication

• Cloning, reflinks

◦ can make an exact snapshot of file, copy-on-write

◦ different inodes, initially point to same blocks
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◦ different from hardlink (different dir entry, point to

same inode)

• In-place conversion from ext3/ext4

• Superblock mirrors – at 64k, 64MB,256GB, and 1PB.

All updated at same time. Has generation number.

Newest one is used.
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ZFS

• Advanced OS from Sun/Oracle

• 128-bit filesystem (opposed to btrfs which is 64-bit)

Running out of space would require 1024 3TB hard drives

• Not really included in Linux due to licensing issues

(CDDL vs GPL2)

Was originally proprietary, then open source, then

proprietary again (with open fork)

• Vaguely similar in idea to btrfs

• indirect still, not extent based?

29



• Acts as both the filesystem *and* the volume manager

(RAID array)

• Aim is to be super reliable, to know the state of

underlying disks, make sure files stay valid, drives stay

healthy

• Can take snapshots. Can roll back if something goes

wrong.

• Checksums. Stored in parent. Other fs stores with file

metadata so if that lost then checksum also lost

• Limitations: needs lots of RAM and lots of free disk

space (due to copies and snapshots). If less than 80%
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free then goes to space-conserve mode rather than high-

performance

• Supports encryption (btrfs doesn’t yet)
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ReFS

• Resilient FS, codename “Protogon”

• Microsoft’s answer to btrfs and zfs

• Windows 8.1

• Initially removed features such as disk quotas, alt data

streams, extended attributes (added later?)

• Uses B+ trees (not same as b-trees), similar to relational

database

• All structures 64-bit

• Windows cannot be booted from ReFS
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APFS

• New Apple OS for High Sierra and later, iOS 10.3 later

• Fix core problems of HFS+

• Optimized for solid-state drive, encryption

• 64-bit inode numbers

• checksums

• Crash protection: instead of overwriting metadata,

creates new metadata, points to it, and only then

removes old

• No hard-links to directories (most other OSes are like
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this) but this breaks “Time Machine” backup

• HighSierra auto-converts flash-based drives
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Networked File Systems

• Allow a centralized file server to export a filesystem to

multiple clients.

• Provide file level access, not just raw blocks (NBD)

• Clustered filesystems also exist, where multiple servers

work in conjunction.
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NFS – Network File System (NFS2/3/4)

• Developed by Sun in the 80s.

• Stateless. Means server and client can reboot without

the other noticing.

• A server, nfsd, exports filesystems as described in

/etc/exports. The server can be in userspace or

in the kernel

• Needs some sort of “file handle” unique value to specify

value. Often cheat and use inode value. Problem with

older version of protocol with only 32-bit handles.
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• UDP vs TDP

• Read-ahead can help performance

• Cache consistency a problem. One way is to just have

timeouts that flush data regularly (3-30s)

• List of operations (sort of like syscalls) sent to server

read sends a packet with file-handle, offset, and length

No open syscall; server has no list of open files. This

way there is no state needed, can handle reboots.

• nfsroot
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CIFS/SMB

• Windows file sharing.

• Poorly documented

• Samba reimplements it, originally reverse-engineered.
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Virtual/Pseudo Filesystems

• Files do not exist on disk; they are virtual, fake files that

the kernel creates dynamically in memory

• proc

• sys

• debugfs

• usbfs
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Distributed / Cluster Filesystems
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procfs

• Originally process filesystem. Each process gets a

directory (named by the process id (pid)) under /proc

Tools like top and ps use this info.

◦ cmdline

◦ cwd

◦ environ

◦ exe

◦ fd

◦ maps
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• Eventually other arbitrary files were also included under

proc, providing system information

◦ cpuinfo

◦ meminfo

◦ interrupts

◦ mounts

◦ filesystems

◦ uptime

• ABI issues – these files are part of the kernel, and even

though the intention was that they could come and

go at will, enough people write programs that depend
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on them, the values cannot be easily changed without

breaking the ABI
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sysfs

• procfs was getting too cluttered, so sysfs was created

• intended to provide tree with information on devices

• one-item per file and strict documentation rule

• also hoped that it would replace sysctl() and ioctl() but

that hasn’t happened
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Other Filesystem Features
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Sparse Files / Holes

• What if your file has lots of zeros?

• What if you seek way into a file (to write something at

end)

• Do you need to allocate zeros on disk for these?

• Many filesystems support holes, where the inode list says

a file has a zero, only allocates disk block if you write in

this range

• Can save a lot of disk space
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More Features

• Compression – transparently compress files. Does have

some performance issues, write issues (do you have to

decompress, write, then recompress?) and also files

rarely compress to nice power-of-two sizes.

• Online fsck

• Defragmentation

• Undelete
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• Secure Delete

• Snapshots

• Journaling

• De-dup

• Quotas – especially an issue on multi-user machines, you

want to keep any one user from filling up the disk.

• Encryption
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• Locking – may want to prevent more than one person

writing a file at a time as it can get corrupted
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Linux VFS

• VFS interface - VFS / Virtual Filesystem / Virtual

Filesystem Switch

• Makes all filesystems look like Linux filesystems. Might

need hacks; i.e. for FAT have to fake a superblock,

directory entries, and inodes (generate on the fly).

Can be important having consistent inode numbers as

filesystems like NFS use them even across reboots.

• Objects

◦ superblock
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◦ inode object (corresponds to file on disk)

◦ file object – info on an open file (only exists in memory)

◦ dentry object – directory entry.

• Can use default versions, such as default llseek

• dentries are cached. As they get older they are freed.

• dentry operations tale. hash. compare (how you handle

case sensitive filesystems)
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Linux Filesystem Interface

• linux/fs.h

• Module. Entry point init romfs fs(), exit romfs fs()

– init romfs fs() – register filesystem()

name, romfs mount, romfs kill sb

– romfs mount – mount bdev(), romfs fill super

– sb− >s op=&romfs super ops();

– romfs iget() − > i op struct, gets pointed to in each

inode
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mounting

• Opens superblock

• Inserts into linked list of opened filesystems
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pathname lookup

• If begins with /, starts with current− >fs− >root

• otherwise, relative path, starts with current− >fs− >path

• looks up inode for starting directory, then traverses until

it gets to the one wanted

• the dentry cache caches directory entries so the above

can happen without having to do any disk reads if the

directory was used recently before
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• the access rights of intervening directories must be

checked (execute, etc)

• symbolic links can be involved

• you might enter a different filesystem

• Should you cache invalid file lookups?
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open syscall

• getname() – safely copies name we want to open from

userspace process

• get unused fd() to get the file descriptor

• calls filp open()

◦ creates new file structure

◦ open namei() – checks dentry cache first, otherwise

hits disk and looks up dentry

◦ lookup dentry()

• validates and sets up the file
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• returns a fd
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FUSE

• Allows creating filesystem drivers in userspace

• Works on various OSes
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