
ECE 531 – Advanced Operating
Systems

Lecture 22

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 November 2023

https://web.eece.maine.edu/~vweaver


Announcements

• Project topics were due, I am responding

• HW#7 was posted, mostly short answer

• 2nd Midterm moved to November 30th

1



Brief Midterm Review

• Not cumulative, will be mostly topics since last midterm

• Virtual Memory

• Filesystems

• Graphics

• Multicore / Locking

2



Project Notes – General

• Might be best to start small and gradually build to

project

• Start with userspace code on Linux if possible before

moving to our OS

• Might be easier to prototype some stuff on the earliest

versions of the homework OS rather than the most recent

that has more complex features

3



Project Notes – Device Drivers

• Ideally drivers for things like 1-wire / i2c / etc would live

in the kernel

• To access from userspace you’d need to add a syscall

• In a perfect world you’d access via /dev but even the

most recent HW doesn’t support that yet

• Getting things working at all is most important though

so it’s fine to just provide userspace access

4



Project Notes – PS/2 Mouse

• Mouse is a bit more difficult than keyboard (keyboard will

generally work without being written to first, a mouse

you have to send a packet to activate)

• Low-level open-collector interface

◦ Clock and Data lines pulled high by pull-up

◦ To send 0, set GPIO pin to OUTPUT and output a 0

◦ To send 1, *don’t* output a 1. Instead switch the line

to input which will allow the line to be pulled up to a

1

5



• Packet generally 11 bits, start/data/parity/stop

• Timing, ideally 10-20kHz or so. Hard to generate exact

short time delays in kernel

• On real x86 hardware there was a separate micro-

controller that ran the keyboard so the OS only had

to talk to that, didn’t have to bitbang the lines like this

• You can constantly poll for input, but that is wasteful

◦ Instead you can set up an interrupt handler

◦ Configure to trigger on falling edge (high to low) of

GPIO23

◦ This is IRQ49. You’ll have to update IRQ handler to

6



call your read routine when this triggers.

7



Multi-Processing

• In the old days your computer had a single CPU/core

• That was relatively simple to deal with

• Modern systems (even small embedded systems) have

multiple cores

8



Hardware Concerns – Multi-Processing

• SMP/CMP (Symmetric or Chip Multi-processing): all

cores are identical

• Asymmetric: cores can have different features (see ARM

big.LITTLE or intel’s efficiency cores)

9



Hardware Concerns – Multi-Threading

• SMT (Simultaneous Multi-threading), Hyperthreading

(Intel)

• Pipelined processor might not be able to fill all pipelines

each cycle

• Add an extra instruction queue and have two programs

issuing instructions to the pipelines

• Less transistors than extra core but usually not as much

of a performance gain (can actually be worse!)

• OS often treats extra threads like extra processors for

10



scheduling purposes

11



Hardware Concerns – Memory

• Shared memory vs Distributed

Shared memory, a CPU can write a value to memory,

read it back and it will be different (another CPU can

write to it)

• How many copies of the OS? One per core or single

image? One per core is more like a cluster.

12



Hardware Concerns – NUMA

• In old days, single CPU with one single range of memory

• Modern CPUs, the memory controller (and DIMMs)

might be run by separate packages

• This means some RAM is more distant from a core than

others

• This leads to NUMA (non-uniform memory access),

some RAM takes longer to access

• OS should take this in account when starting processes

/ scheduling jobs

13



• UMA, NUMA, CC-NUMA (cache-coherent)

14



Multi-Processor Resource Sharing

• How are resources shared in SMP system?

• Any core can access any of the devices. Need locking.

15



Multi-Processor Interrupts

• Have one core handle all interrupts?

Might have better cache behavior

• Round-robin interrupts to each core?

Reduces load on core0 but hurts others.

• Balance interrupt load across processors?

16



OS Support for SMP

• How can we have multiple cores share one OS-image?

• Big-kernel-lock

◦ Simple, only one core can be inside kernel at time

◦ Doesn’t scale well, can end up with a lot of cores

waiting for kernel to be available

• Split up with fine-grained critical sections.

◦ Only parts of OS happen at once. Scheduler can run

at same time as serial driver or filesystem read or page

fault

17



◦ Much harder to get right

18



SMP Scheduling

• 4 processors, 5 jobs

How to avoid ping-ponging? Better to make two

processes slow or all of them?

• Gang scheduling – if you have processes that are using

IPC (or multithreads) you want to schedule all at the

same time so can communicate without having to wait

through multiple context switches.

• Keeping jobs on same CPU started on (why is this

good?) Cache behavior. TLB, NUMA.

19



Why might you want to move them?

• When might you want to run everything on one core

even though lots available? Power! Can put rest of

CPUs to sleep.

• How do you online/offline hotswap processors.

20



Multiprocessor Scheduling

• Currently

◦ Timer interrupt (or yield waiting for I/O comes in)

◦ We scan the linked-list of processes seeing if any other

process is ready to run

◦ If it is, run it. If not, keep running current.

◦ If no process is ready, run idle task

• Now

◦ Timer interrupt: does the timer interrupt go to each

core? Do you have separate timers? Do you have one

21



timer and it broadcasts an IPI to all cores?

◦ Multiple cores inside scheduler at once. Is that an

issue? Need locking.

◦ Each core looks at the list to see if anything ready to

run.

• Issues

◦ affinity – Ideally, a process stays on same core if at all

possible.

Maybe even have separate per-processor queue of jobs

to run

◦ smart scheduling – if a process has a spinlock held

22



let it have a bit more time to clear so other processes

aren’t stuck on it

◦ space scheduling – a job needs say 8 threads, wait

until 8 cores are available to run it

◦ gang scheduling – time and space scheduling if doing

IPC with other processes, doesn’t make sense to

schedule the other side of these at different times

23



Helper Threads

• Linux has kernel threads (look in top for things starting

with k or rcu).

• One of each type of thread per core

• Interrupt handlers have fast handler and worker threads.

24



Initializing Multicore on Raspberry Pi

• Bare Metal

◦ Detect which processor you are on
mrc p15 , 0, r3 , c0 , c0 , 5

ands r3, #3 /* CPU ID is Bits 0..1 */

bne wait_forever /* If not CPU zero , go to sleep */

◦ “park” the extra CPUs. Put in tight loop, wfe (wait

for exception) when wake, check a flag to see if they

should start and jump to address if true. Otherwise,

back to sleeping.

◦ To wake, use SEV to send event

• Raspberry Pi boot firmware does this for you

25



It copies some code to 0x0 and executes it before jumping

to your code at 0x8000

◦ This code parks the other cores

◦ each process has a mailbox, if you write an address

there it will jump to it core 1: 0x4000009C core 2:

0x400000AC core 3: 0x400000BC

◦ They are waiting in WFE so have to send SEV too

• Other things you will need to do:

◦ Set up stacks for each CPU (why can’t they all share

the CPU0 stack?)

◦ Start up virtual memory and caches

26



Locking depends on the caches working

◦ Start them into idle thread

◦ Start scheduling jobs?

27



Multicore Concerns

28



Race Conditions

• Shared variable access (increment memory free after

allocate?)

• Read-Modify-Write on ARM, value starts at 0
Core A Core B

Read value from memory

Increment value in reg Read value from memory

Write back to memory Increment value in reg

Write back to memory
• What is the final result?

• What should the result be?

29



Critical Sections

• Want mutual exclusion, only one can access structure at

once

1. no two processes can be inside critical section at once

2. no assumption can be made about speed of CPU

3. no process not in critical section may block other

processes

4. no process should wait forever

30



How to avoid

• Single core: just disable interrupts

◦ Bad for performance

◦ OS might not let you do this as user (why?)

• Multicore: Locks/mutex/semaphore

31



Mutex

• mutex lock(&lock);

◦ if unlocked (0), then it set lock=1 and return

◦ if locked, return failure

◦ what do we do if failed?

Busy wait? (spinlock)

re-schedule (yield)?

• mutex unlock(&lock): sets lock to zero

• NOTE: we need special instructions for this (see later)

32



Semaphore

• Up/Down

• Wait in queue

• Blocking

• As lock frees, the job waiting is woken up

33



Locking Primitives

• Depend on Atomicity (what’s that?)

• fetch and add (bus lock for multiple cores), xadd (x86)

• test and set (atomically test value and set to 1)

• test and test and set

• compare-and-swap

◦ Atomic swap instruction SWP (ARM before v6,

deprecated)

◦ x86 CMPXCHG

◦ Does both load and store in one instruction!

34



◦ Why bad? Longer interrupt latency (can’t interrupt

atomic op)

◦ Especially bad in multi-core

• load-link/store conditional

◦ Load a value from memory

◦ Later a store to same memory address.

◦ Only succeeds if no other stores to that memory

location in interim

◦ ldrex/strex (ARMv6 and later)

• Transactional Memory

35



Locking Primitives

• can be shown to be equivalent

• how swap works:

◦ lock is 0 (free). r1=1; swap r1,lock

◦ now r1=0 (was free), lock=1 (in use)

◦ lock is 1 (not-free). r1=1, swap r1,lock

◦ now r1=1 (not-free), lock still==1 (in use)

36



ARMv7 Mutexes

• On ARMv6 could use swap, but deprecated

• Now ldrex/strex

• Locking
.equ MUTEX_UNLOCKED , 0

.equ MUTEX_LOCKED , 1

.global mutex_lock

mutex_lock:

ldr r1 , =MUTEX_LOCKED

lock_retry:

ldrex r2 , [r0]

cmp r2 , r1 @ are we already locked?

wfeeq @ if so, go to sleep (wait for event)

beq lock_retry

strex r2 , r1, [r0] @ conditionally store value of r1 into r0

@ r2 lets you know if it worked or not

cmp r2 , #1 @ if this failed

37



beq lock_retry @ then keep retrying

@ lock was acquired

dmb @ Memory barrier

bx lr @ return

.global mutex_unlock

mutex_unlock:

ldr r1 , =MUTEX_UNLOCKED

dmb @ memory barrier

str r1 , [r0] @ clear the lock

dmb

sev @ wake other processors waiting in wfe

@ by sending wakeup event

bx lr

38



Memory Barriers

• Not a lock, but might be needed when doing locking

• Modern out-of-order processors can execute loads or

stores out-of-order

• What happens a load or store bypasses a lock instruction?

• Processor Memory Ordering Models, not fun

• Technically on BCM2835 we need a memory barrier any

time we switch between I/O blocks (i.e. from serial

to GPIO, etc.) according to documentation, otherwise

loads could return out of order

39



Deadlock

• Two processes both waiting for the other to finish, get

stuck

• One possibility is a bad combination of locks, program

gets stuck

• P1 takes Lock A. P2 takes Lock B. P1 then tries to take

lock B and P2 tries to take Lock A.

40



Livelock

• Processes change state, but still no forward progress.

• Two people trying to avoid each other in a hall.

• Can be harder to detect

41



Starvation

• Not really a deadlock, but if there’s a minor amount

of unfairness in the locking mechanism one process

might get “starved” (i.e. never get a chance to run)

even though the other processes are properly taking and

freeing the locks.

42



How to avoid Deadlock

• Don’t write buggy code

• Reboot the system

• Kill off stuck processes

• Pre-emption (let one of the stuck processes run anyway)

• Rollback (checkpoint occasionally)

43



Priority Inversion

• Low-importance task interrupts a high-priority one

• Say you have a camera. Low-priority job takes lock to

take picture.

• High-priority task wants to use the camera, spins waiting

for it to be free. But since it is high-priority, the low

priority task can never run to free the lock.

44



Locking in your OS

• When?

• Interrupts

• Multi-processor

• Pre-emptive kernel (used for lower latencies)

• Big-kernel lock? Fine-grained locking? Transactional

memory?

• Semaphores? Mutexes

• Linux futexes?

45



Where does our OS need locks?

• Does a single-core operating system need locks?

Yes, interrupts can cause similar troubles

• Any shared resources

• What if multiple processes try to write the console at

the same time?

• What if try to update the memory allocation/free list at

same time?

46


