
ECE531: Advanced Operating Systems – Homework 6
Memory and Context Switching

Due: Friday, 31 October 2025, 5:00pm

This homework involves memory allocation and context switching.

1. Download the homework code template

• Download the code from:
http://web.eece.maine.edu/~vweaver/classes/ece531/ece531_hw6_code.tar.gz

• Uncompress the code. On Linux or Mac you can just
tar -xzvf ece531_hw6_code.tar.gz

• Note! The code layout has changed drastically since the previous homework!

– Things have been moved to subdirectories
– The userspace code is built separately and put into a ROMFS disk image.
– Try building and running the code as soon as possible! I’ve only really tested on Linux so if

it breaks for you let me know so I can address this.

• After running make, the kernel.img file can be found in the “kernel” subdirectory

• This kernel file contains the ramdisk too, so if you make changes to userspace make sure you
rebuild the entire project before copying the image over.

2. Context switch

• The code has been updated to allow full multi-tasking!

• First, kernel/drivers/timer/sp804_timer.c was updated so the interrupt happens
at 64Hz.

• vfork() and execve() were implemented to allow starting new processes. See the code in
kernel/processes/

• A scheduler was added kernel/processes/scheduler.c that is run on every timer in-
terrupt.

• When no jobs are ready, an idle task that does nothing is run.

• Test it out! Run printa & (the ampersand means run in the background). Then quickly type
printb and you should see both jobs are running at the same time.

• Now go and answer question 4a below.

3. Memory allocation code (4pts)

• Look at the memory allocation code in the find_free() function in
kernel/memory/memory.c.

• Determine what type of algorithm is used, and answer Question 4b below.

• Modify the memory.c file so it implements the next-fit algorithm.

http://web.eece.maine.edu/~vweaver/classes/ece531/ece531_hw6_code.tar.gz


4. Questions (6pts)
Answer these questions in the README file.

(a) What type of scheduling algorithm is implemented in
kernel/processor/scheduler.c?

(b) What type of memory allocation algorithm is implemented in
kernel/memory/memory.c?

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xa
0xb
0xc
0xd
0xe
0xf

= Used Memory

= Free Memory

Each page of memory is 4kB

64kB memory

Memory Usage Bitmap

0000 1011 0000 0101

(c) In the above diagram, how much memory is free?

(d) If you were allocating a 16kB chunk of memory using the first-fit algorithm, where would it go?

(e) If you were allocating a 16kB chunk of memory using the best-fit algorithm, where would it go?

(f) In this case, why might the best fit result be better than the first fit one?

(g) Would it be possible to allocate a 32kB chunk of RAM?
If not, what could be done to make this possible?
Would the proposed action work if the chunks of memory shown were allocated by a C program
using malloc()?

5. Submit your work

• Run make submit in your code directory and it should make a file called hw6_submit.tar.gz.
E-mail that file to me as well as the document with the answers to the questions.

2


