
ECE 531 – Advanced Operating
Systems
Lecture 2

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 September 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Homework 1 will be posted, short answer

• Will distribute Pis next week

• Note: ECE574 will not be offered in the Spring

1



More OS Background

2



What’s included with an OS

• kernel / drivers (syscall barrier) – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included? (lawsuit)

• Linux usually makes distinction between the OS Kernel

and distribution. MacOS/Windows usually doesn’t.

3



Linux Distributions

• The files, libraries, userspage applications

• RedHat/Fedora/Suse/Ubuntu/Debian

• The included applications differ, but still all use the same

Linux kernel

4



What Does Linux Kernel Provide

• Boot/initialization

• Hardware drivers

• Network (TCP/IP and others)

• Interrupts, DMA

• Multi-tasking/Job scheduling

• Virtual Memory

• Filesystems

• Security(?)

• Graphics?

5



Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar

6



What Language do you write OS in?

A System Programming Language

• Assembly Language? (why not)

• C?

• C++? (why not)

• Java? Python? Javascript?

• Rust? Go? Zig?

7



Before you can run an Operating System
you first have to Compile it from Source

Code

• Have you ever built your own kernel?

• Have you ever built your own C-library?

• Have you ever built your entire userspace? web-browser?

• How about building a compiler?

8



Aside on Build Systems

• Usually you don’t compile code one file at a time

• There are systems that can automate or script this

• The traditional Linux/UNIX way is with a tool called

“make” and “Makefiles” that describe dependencies and

how to build the code

• If you use an IDE it might have its own way of doing

things

• People are constantly proposing alternatives, things like

CMake but they all have their own issues

9



Linux Kernel Source Code

• What language is the kernel written in?

• C and assembly (with some helper shell/perl scripts)

• Why C?

◦ Low-level, close to hardware (portable assembler)

◦ Fast

◦ Historical

◦ Downsides: buggy, security bugs

• Why not C++ (or Java or Rust or Go)

◦ Historical reasons, cost to change

10



◦ Overhead/speed (is 10-15% slower OK?)

◦ Higher level languages harder to predict (operator

overload, exception handling, garbage collection, etc)

◦ Recently there’s been a push to allow writing parts of

the kernel in Rust. Ongoing.

11



Large Open-source Project Development

• Linux is a prime example

• Communications: mailing list, forum, etc (Linux: linux-

kernel)

• Way to submit changes: git pull requests, patches made

with diff tool

• Once a project gets large enough it will need to have

rules

12



Source Code Management

• Allows tracking changes to source code, authorship,

commit messages describing changes to code, branches,

etc

• Allow debugging via bisect

• Historical: SCCS, CVS, subversion, mercurial

• git

◦ Linux lasted long time w/o SCM

◦ Linus got burned out. McVoy came up with

(proprietary) bitkeeper

13



◦ bitkeeper hit limits and also trouble with users trying

to reverse-engineer

◦ Linus got fed up and took a few weeks to invent git

14



Linux kernel releases

• Currently 6.16 (explain modern version numbering)

• Linus Torvalds releases kernel

• Spends next two weeks in “merge window” merging all

the well-tested patches that have accumulated. Then

releases -rc1

• Series of -rc as things are tested

• After -rc7 or -rc8 releases final version. Repeat

• Distributions or volunteers will often maintain older

’stable’ versions that aren’t quite as cutting edge

15



Linux kernel size

• Git checkout on my machine is 5.5G (before building)

• After building, 15G

• 73k files, 31 architectures (these numbers are older)

• For comparison, September 1991, Linux 0.01

512kB disk, 100 files, 1 architecture

16



Building Linux Kernel by Hand

• Check out with git or download tarball:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

http://www.kernel.org/pub/linux/kernel/v6.x/

• Configure. (complicated and verbose)

make config or make menuconfig

Also can copy existing .config and run make

oldconfig

• Compile.

17

http://www.kernel.org/pub/linux/kernel/v6.x/


make

What does make -j 8 do differently?

• Make the modules.

make modules

• sudo make modules install

• sudo make install or manually copy bzImage to boot,

update boot loader

• Cleanup, make clean and make mrproper

18



Building Linux Automated

• If in a distro there are other commands to building a

package.

• For example on Debian make-kpkg --initrd

--rootcmd fakeroot kernel image

• Then dpkg -i to install; easier to track

19



Overhead (i.e. why not to do it natively on
a Pi)

• Size – clean git source tree (x86) 1.8GB, compiled

with kernel, 2.5GB, compiled kernel with debug features

(x86), 12GB!!!

Tarball version with compiled kernel (ARM) 1.5GB

• Time to compile – minutes (on fast multicore x86

machine) to hours (18 hours or so on Pi-B+)

20



Developing Linux

• Fun!

• Despite news reports, odds of getting flamed by Linus

(or even have him realize you exist) are very low.

• Can be tedious, can take months to get a change

committed

• Much of low-hanging fruit already gone

• Code is not really all that well commented

• Might be stuck bisecting for days

21



Linux on the Pi

• Mainline kernel, bcm2835/bcm2836 tree

Missing some features

• Raspberry-pi foundation bcm2708/bcm2709 tree

More complete, not upstream

• Why everything not upstream? Common problem,

especially on ARM. Getting upstream is hard, high

standards. Takes patience and time, small one-off ARM

boards do not have the resources for the process.

22


