
ECE 531 – Advanced Operating
Systems
Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#1 was posted, due on Friday.

• Will hand out Pis later this week

1

Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar

2

Linux on the Pi

• Mainline kernel, bcm2835/bcm2836 tree

Missing some features

• Raspberry-pi foundation bcm2708/bcm2709 tree

More complete, not upstream

• Why everything not upstream? Common problem,

especially on ARM. Getting upstream is hard, high

standards. Takes patience and time, small one-off ARM

boards do not have the resources for the process.

3

Compiler Followup Last Time

• Not really needed for this course, but interesting, and a

bit sad UMaine doesn’t offer a course

• Compilers often broken into two parts

• Front End

◦ Parses the code and creates something called

Intermediate Representation (IR)

◦ Lexer/Parser, can use tools like lex/yacc (or on Linux,

flex/bison)

Lexer scans input, converts to tokens

4

Parser processes the tokens

◦ Can also write own EBNF parser. As a last resort

brute-force with C string parsing (but that’s a pain)

◦ Recurses through code, so you have a for statement,

it will get that, then the first expression it will call off

and if that statement includes other statements it can

nest

◦ This is where things get tricky. In C can have arrays

inside of structs inside of arrays, etc, and infinitely

nesting loops and if/else statements

◦ Nice thing about this, you can have different front-

5

ends, C, C++, Java, FORTRAN, etc

• Back End

◦ Take IR and converts it to assembly language

◦ Can have multiple backends, so can take IR to x86, or

ARM, or RiscV, etc. Also how cross-compilers work.

◦ One tricky part is “register allocator”. Most

architectures have a limited number of registers so

need to allocate variables to these in an optimal way

Need to find out when register no-longer used so can

re-use it.

Also issues like various paths though if/else statements

6

but need to make sure the final value for a variable is

correct

• Optimizing Compiler

◦ Before running the back-end can run multiple

optimizing passes

◦ Things like constant folding (2*2 = 4) or things like

(x*2 to a left shift) or hoisting, unrolling, etc

◦ This is where “undefined behavior” can be an issue as

compiler authors love exploiting that in order to make

optimizations better

7

Brief history on C

• 1970-1972, Dennis Ritchie

Systems language for UNIX, moving from PDP-7 to

PDP-11

• Simplified version of BCPL (“B”), updated version called

“C”

• K&R C book 1978. ANSI C 1989,

C89/C90/C99/C11/C17/C23

8

How Small can a C compiler be?

• The original PDP-11 wasn’t exactly resource heavy

• Fabrice Bellard OTCC for the IOCCC, tiny C compiler

fitting in 2k or so of source code

9

Compiling – how does it work?

Traditionally this is how it works on gcc, others may vary.

• compiler takes C-code (.c), makes assembly language

(.s)

• assembler takes assembly (.s), makes object file (.o or

.obj) machine language

• linker takes object file, resolves addresses, arranges

output based on linker script, creates executable

• Who wrote the first compiler? Assembler? Machine

language?

10

Tools

• compiler: we use gcc, others exist (intel, microsoft,

llvm/clang)

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

• linker: ld

11

Converting C to assembly

• You can use gcc -S to have it dump out the assembly

it makes

• The whole process is fairly complex, you can take whole

classes on it.

12

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

13

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

• B-flat format (used in this class)

14

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

15

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

16

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

17

Use of ELF format

• Userspace programs will be built as ELF executables

• Kernel images often are too, though either the

bootloader has to be aware of this or you might have to

strip the header off before using it

• vmlinux on Linux

18

Cross-compiling

• Building for a different architecture

• Why? ARM machines often slow

• Why not? Source tree has to be handle this. Makefile.

etc. Usually easier to compile natively

• Linux kernel tends to cross compile OK.

19

Booting a System

• Why is it called booting?

• Most likely source is the idea of “Pulling oneself up by

ones bootstraps”, i.e., getting somewhere by starting

with nothing

20

Simple Booting

• Simplest systems have code in ROM.

The CPU initializes, points the Program Counter to a

known location, and starts executing.

• The STM32L boards in ECE271 do something similar;

code is in flash, reset vector (at offset 0) points at code

to start. press reset, runs reset vector, up to you to do

everything else.

21

