
ECE 531 – Advanced Operating
Systems
Lecture 4

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 September 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#1

• Pis will hopefully be ready Friday

1



Booting a System

• Why is it called booting?

• Most likely source is the idea of “Pulling oneself up by

ones bootstraps”, i.e., getting somewhere by starting

with nothing

2



Simple Booting

• Simplest systems have code in ROM.

The CPU initializes, points the Program Counter to a

known location, and starts executing.

• The STM32L boards in ECE271 do something similar;

code is in flash, reset vector (at offset 0) points at code

to start. press reset, runs reset vector, up to you to do

everything else.

3



Boot Firmware

Provides booting, configuration/setup, sometimes provides

rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.

Often mysterious bugs, only tested under Windows, etc.

• BIOS – legacy 16-bit interface on x86 machines

• UEFI – Unified Extensible Firmware Interface

ia64, x86, ARM. From Intel. Replaces BIOS

• OpenFirmware – old macs, SPARC

• LinuxBIOS

4



Boot Firmware Aside

• Tell story of doing spread spectrum on Progear webpad

but early in BIOS so doing i2c in assembly language with

no RAM configured yet

5



Firmware Boot Process

• Low-level code (often written in assembly language) that

initializes the system.

• Often in ROM/EEPROM/FLASH

• Boot firmware initializes system.

6



Firmware Boot Initialization

• Init RAM? Set it up (often over i2c), clear out random

or old contents (if a soft reboot). This part operates

without memory or stack to use, tricky.

• Init other hardware. I/O, serial ports, keyboard, display,

etc.

• Load code to boot.

7



Boot Code Location

• Hard-disk (SSD or spinning rust)

• Removable: floppy-disk, CD/DVD, USB key, SD-card

• network (PXE)

• Old days: tape, paper-tape, console switches?

8



Other Boot Firmware Concerns

• Might have other interfaces: boot selection/configuration

screen?

• Some firmware provides routines for hardware to use,

for things like accessing disks, writing to screen, reading

keyboard, initializing security, etc.

• Firmware development is hard. Not all corner-cases well

tested (can it boot Windows? Ship it). Kernel and

Firmware devels have antagonistic relationship.

9



Booting on x86

• BIOS original firmware. 16-bit. Dates back to CP/M

days. Provided booting and a library for accessing I/O.

(MS-DOS a thin layer over BIOS).

• These days EFI and uEFI replacing it, 32/64-bit. Written

in higher level language.

• Firmware provides other interfaces, like power

management, ACPI, device enumeration, etc.

• x86 firmware can use SMM mode which allows

secret/hidden code running behind the scenes for things

10



like hardware emulation (USB keyboards) and power

management.

11



Booting on x86 / Historical

• Firmware traditionally loaded a 512Byte bootsector from

floppy/hard disk (last two bytes 0x55 0xAA) to 0x7c00

and jumped to it. This “first stage” then had enough

code to load a more complex “second stage”

• Demoscene: people write demos or entire games that fit

in one bootsector

12



x86 Bootloader

• The bootloader (GRUB is common on x86 Linux) loads

OS

• Linux has had many, many other bootloaders over years

• Other OSes like Windows and OSX also have them, more

subtle

• Can Provide nice graphical interface often (to select

images)

• Can have console for command line arguments and

browsing kernel images.

13



Loading Linux

• Linux is usually on disk, sometimes a separate boot

partition. Complicated because blocks might not be

contiguous on disk.

• Some Linux images can be loaded directly, without need

of bootloader.

• Linux image itself can be complex

14



Linux Image

• “vmlinux” (why called that? historical, unix, vm unix)

• decompresser and compressed image (zImage, bzImage,

uIMage, etc)

• When building, the kernel image is taken, stripped,

compressed. piggy “piggyback” code put on, as well

as decompresser. Originally floppy boot code stuck on

beginning as well.

• Different entry points. On x86 BIOS boots into 16-bit.

EFI and bootloaders can jump into 32/64

15



• So optionally boots in 16-bit mode. Switches to

32-bit mode. If 64-bit, optionally switch to 64-bit

Decompressed kernel to 0x10 0000 (might have to move

decompress code). (above 1MB. Why? 640k) What

about initrd?

• Jump to startup 32 / startup 64 function

• 16-bit code handles various stuff, gets memory size from

BIOS, etc

• 32/64 relies more on boot loader. Has specification for

how registers set up, etc.

• relocates decompression code if needed. Sets up stack,

16



clears BSS, Decompresses.

• relocate if needed. why? randomization is one.

• Memory map. Virtual mem. First 896M of physical

mem mirrored in top of 32-bit. Why? So kernel can

easily copy to/from. Can convert kernel virt to phys with

just subtraction. Complicated if more than that much

RAM, have to copy around. HIGHMEM.

• space above for vmalloc

• somewhat more complicated 64-bit

• kernel just an ELF executable

17



Linux Userspace Transition

• Starts Userspace program “init” (old days simple

program and shell scripts, these days “systemd”)

• Sometimes an “initrd” is included too that has enough

drivers to get Linux going and a very minimal filesystem

to help with booting before disks/filesystem ready.

18



Disk Partitions

• Master Boot Record, Boot Sector

• Followed by partition table

• Way to virtually split up disk.

• DOS – old way, in MBR. Start/stop sectors, type

• Types: Linux, swap, DOS, etc

• Had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many).

• UEFI/GPT (GUID) more flexible, greater than 2TB

19



Bootloaders on ARM

• The most common is uBoot

• uBoot – Universal Bootloader, for ARM and other

embedded systems

• Almost like minimal OS

• More of a challenge to write a bootloader for a widely

nonstandardized architecture like ARM. (Why is ARM

so nonstandardized?)

20



Uboot Booting

• Most non-Pi ARM devices, ARM chip runs first-stage

boot loader (often MLO) and second-stage (uboot)

• FAT partition

Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

The boot firmware (burned into the CPU/ROM) is smart

enough to mount a FAT partition

21



Booting on typical ARM/uboot

• vmlinux. strip. compress. piggy / piggyback. convert

to zImage. mkuimage converts to uimage suitable for

booting with uboot

• No bios really. Bootloader provides all info.

• Device Enumeration: Device Tree provides config info

for hardware (memory size, interrupts, what hardware is

there). This allows kernel that will run on many ARM

boards (PI, beaglebone, pandaboard, etc) rather than

having to have a different hard-coded kernel for each

22



possible platform.

23


