
ECE 531 – Advanced Operating
Systems
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#1 due today

• HW#2 will be posted (we’ll discuss in class today)

1

Kernel booting Summary

• Initializes hardware. First part asm. Transition to C as

quickly as possible. First thing to initialize. Memory.

Then simple in/out. Enable keyboard, simple VGA, serial

console. So printk can work.

• Relocates decompression code

• Decompresses

• Parse the resulting ELF file.

• Apply any relocations

• Jump to entry point

2

Raspberry Pi Booting

• Unusual (and has changed over the past few years)

• Small amount of firmware on SoC

• Pi is actually a large GPU chip with helper ARM chips

◦ VPU – Dual Core Videocore IV chip CPU,

SIMD, Parallel Processor, ThreadX OS, co-ordinates

everything, as well as video codecs, power, etc.

◦ ISP – Image Sensor pipeline, processing for the cameras

◦ QPU – Quad Processor Unit – 24 GFLOP compute

pipeline, co-ordinate and vertex shader.

3

Raspberry Pi Booting – First Stage

• Power on – First stage – Boot ROM in GPU starts up

GPU runs things. Draws rainbow pattern, lightning

bolts, etc

• First stage tries to load bootcode.bin second stage

◦ On original Pi this was just SD card

◦ Pi3 can boot off of Secondary SD, SPI, NAND, USB

or network.

Also some complex hack to flash the OTP (?) to allow

GPIOs to be dedicated to boot-selection

4

◦ Pi4 and later this might live on eeprom

If fails, special rescue image on SD card can fix

◦ bootcode.bin loaded into L2 cache (shared

CPU/GPU?) and executed

5

Raspberry Pi Booting – Second Stage

• bootcode.bin – binary blob that is loaded from the SD

card and run by GPU. 1 million+ lines of code? Mostly

written and maintained by one guy at Broadcom?

◦ Has own non-ARM assembly language

◦ Efforts to reverse engineer:

https://github.com/christinaa/rpi-open-firmware

https://github.com/hermanhermitage/videocoreiv

◦ Inits SDRAM, gets ARM chips ready (if multiple, puts

them in low-power sleep loop)

6

https://github.com/christinaa/rpi-open-firmware
https://github.com/hermanhermitage/videocoreiv

Raspberry Pi Booting – Third Stage

• Third stage – start.elf (cd, db, x)

(used to be an additional stage before this)

Loads and parses config.txt

Lots of settings in config.txt

◦ cd = cut down, if only 16MB of GPU memory specified

ARM and GPU share RAM. Cuts out OpenGL, etc.

◦ x = extra (have things like video codecs, camera)

◦ db = debug, extra asserts

◦ Also fixup.dat (cd, db, x) – used for configuring

7

memory split?

8

Raspberry Pi Booting – Kernel

• Now 4 kernels

◦ kernel.img = old 2835 ARMv6 systems

◦ kernel7.img = 2836 ARMv7 systems (32-bit)

◦ kernel7l.img = 2711 (pi4, but 32-bit compat)

◦ kernel8.img = pi3/pi4 64-bit, set this in config.txt

• Device tree files, .dtb.

9

Raspberry Pi Booting – Device Tree

• Need way to describe hardware. Originally ARM ATAGS

• New way is common across all ARM systems, flattened

device tree

• Server-class ARM systems might have ACPI

(x86/windows compatible instead)

• On boot r2 pointer points to device tree, needs to be

parsed

• Have things like location of hardware in memory, which

IRQ to use, which GPIOs to use, how much memory is

10

free and where it is, what type of CPU, etc.

• By standardized format, can have “generic” linux kernel

that can run on any ARM generation without having to

hard code that all.

11

Raspberry Pi kernel/firmware locations

• Usually in /boot (separate FAT partition)

• Various kernel.img files are kernel

• kernel modules (drivers) in /usr/lib/modules

• initramfs (ramdisk) loaded at boot time, holds various

files and drivers needed to get system going enough so

it can find the rest of the modules on disk (compressed

cpio file)

• config.txt (pi-specific) configures system

• .dtb files – device tree files describing system hardware

12

Writing a standalone (bare-metal) Program

• Easy in assembler

• Some Extra work in C.

Even in a low-level language like C you have to do some

tricks to talk to hardware directly

13

Entry Point from Bootloader

• Execution starts at 0x8000

• Loader passes a few arguments, as in a function call.

Three arguments. As per ABI in r0,r1,r2

r0=device booted from (usually 0)

r1=arm chip identifier (3138 0xc42 on bcm2835)

r2=pointer to system config, device-tree

(years ago it pointed to ARM TAGS (ATAGS)

14

Building / Cross-Compiling

• You will need to set up a cross-compiler

◦ You can find directions online, homework will link to

some

◦ Should be possible from Windows, MacOS, Linux

◦ Past years people have gotten all three to work

◦ In old days much harder, had to compile gcc cross-

compiler from scratch, quite a pain.

• Edit your code, then cross compile.

15

More Cross Compiler Setup

• If you aren’t developing on ARM system will have to

install a compiler that can generate ARM code

• An architecture to target is specified by triplets

• In this class usually use arm-none-eabi though the

arm-none-linux-gnueabihf might be closer

• If running Linux/Debian installing as simple as

apt-get install gcc-arm-none-eabi

• For Windows/MacOS can download official ARM

toolchain from their website https://developer.arm.

16

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

com/downloads/-/arm-gnu-toolchain-downloads

• When compiling with the homework if it can’t find your

cross-compiler you might need to edit Makefile.inc and

point it to the right place

17

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

Copying to SD Card

• Once the image is built, you will copy it to a memory key

that has Linux on it. On the /boot partition, over-write

the proper kernel image

• For this class on Pi-1B+ it is kernel.img

• Note: backup kernel.img if you want the possibility of

booting back to Linux again

• Then reboot.

18

Notes on Code Development

• The most straightforward way is to edit/cross-compile

on a development machine and copy the results over

• This involves a lot of SD-card swapping. Are there

alternatives?

• One way would be to set up “dual boot” on the pi,

compile code natively on Linux, and then reboot and

select Linux or your code

Unfortunately it is really hard to dual boot on a Pi

In theory you can maybe install uboot, would be

19

interested in hearing feedback if anyone ever got it

working

• Another way on Pi3 or newer would be to network boot

and have your kernel image on a server somewhere

• The Pi bootloader does support some limited dual boot

with the auto boot.txt file, but this is complex.

20

HW#2, Blinking an LED – GPIOs

• On embedded systems there are GPIO ports (general

purpose I/O) that you can hook devices to

• By writing the correct registers you can change these

output pins high / low

• The pins are multiplexed (a SoC has lots of features,

but only so many pins so you have to select what does

what)

• The Raspberry Pi has a few LEDs connected to GPIOs

that we can blink

21

Blinking an LED – Which GPIO?

• Unfortunately different models use different GPIOs

• On Model 1B, GPIO16 is connected to the ACT LED

(active low)

• On Model 1B+/1A+/2, it is GPIO47 (active high
instead)

• On Model 3 it’s connected to an i2c GPIO extender

controlled by the VideoCore :((GPIO130)

• On Model 4 it’s back but connected to GPIO42

22

Memory Mapped I/O

• On many computers the peripherals are accessed via

special memory accesses

• There’s a range of address space that is treated like I/O

devices rather than RAM

• The Pi has a complex memory map, but the memory-

map region (IO BASE) is above the RAM

23

Raspberry Pi IO BASE

• On a 1B+ this is just above 512MB at 0x2000.0000

• On later Pis with more RAM it can be at 0x3f00.0000

or 0xfe00.0000

(it’s more complex on 64-bit systems)

• To confuse things the documentation is written from

the GPU’s perspective which lists everything as it it’s at

0x7e00.0000

24

GPIO Interface

• See the peripheral reference available here:

https://web.eece.maine.edu/~vweaver/classes/ece598_2015s/BCM2835-ARM-Peripherals.pdf

• Look in Chapter 6

• The GPIO base is at IO BASE + 0x200000

confusingly lists it as 0x7e200000, just replace the

leading 0x7e with 0x20, 0x3f, or 0xfe depending on your

Pi model).

25

https://web.eece.maine.edu/~vweaver/classes/ece598_2015s/BCM2835-ARM-Peripherals.pdf

Enabling a GPIO pin

• The GPFSEL registers let you enable the GPIO pins.

10 GPIOs per register (3 bits each). GPIO0 is GPFSEL0

bits 0-2, GPIO1 is GPFSEL0 bits 3-5, etc. (TODO:

diagram)

• A value of ‘000’ in GPFSEL makes it an input, ‘001’

enables it for output (what do other values do? see the

manual)

26

Configuring a GPIO pin for Write in C

• GPIO16 is thus GPFSEL1, bits 18-20

GPIO47 is what? (GPFSEL4, bits 21-23)

GPIO18 is what? (GPFSEL1, bits 24-27)

• So to set the value for GPIO16, first clear it to zero

something like:
gpio[GPFSEL0]&=~(0x7 <<18);

then set the value:
gpio[GPFSEL0]|=(1 < <18);

27

Setting a GPIO pin value

• We want to toggle the LED, so set the GPIO line high

or low.

• GPSET registers are used to set a pin to 1.

For these registers there are 32 bits, so in GPSET0 each

bit 0..31 corresponds to GPIO0..GPIO31

• So to set GPIO16 to on, set bit 16 of GPSET0 register.
gpio[GPSET0]|=(1 < <16);

• Note: there’s no need to load/mask before doing this,

the interface is designed so values of 1 are written and

28

values of 0 ignored

29

Clearing a GPIO pin value

• GPCLR registers are used to clear a pin to 0.

• So to set GPIO16 to on, set bit 16 of GPSET0 register.
gpio[GPCLR0]|=(1 < <16);

• As with setting, there’s no need to load/mask/save as

the interface preserves the values

30

More Blinking in C

C is easier to program, but has more overhead.

Things to note:

• Need to compile with -nostartfiles as no C library is

available.

• You need to provide own C library routines. No printf,

strcpy, malloc, anything like that.

• There needs to be boot code to set up the stack, initialize

the BSS, etc.

31

C Helper Defines

You can set up some useful #define statements to make

the code easier to follow.
// note different on pi models

#define IO_BASE 0x20000000UL

#define GPIO_BASE (IO_BASE +0 x200000)

#define GPIO_GPFSEL1 1

#define GPIO_GPSET0 7

#define GPIO_GPCLR0 10

32

Volatile!

The volatile keyword tells the compiler that this address

points to something that might change, so should actually

be read every time a read is indicated.

An optimizing compiler otherwise might notice two reads

to an address with no intervening store and optimize away

the first read! It may also optimize all but the last store if

no intervening reads!
volatile uint32_t *gpio;

gpio=(uint32_t *) GPIO_BASE;

33

Setting a value

You can treat memory as an array.
gpio[GPIO_GPFSEL1] |= (1 << 18);

34

Delays

• The proper way is via timers, but that’s beyond what we

want to do in this homework

• A regular empty loop will be optimized away by the

compiler (even if you put extra volatiles in) gcc keeps

getting better at this.

• Currently what seems to work is:

◦ tell it to not inline the code with void __attribute__ ((noinline)) delay(int length)

◦ Have a loop, but instead of leaving it empty put asm("");

which the compiler can’t optimize away

35

Building our Image

• Linker script kernel.ld (tells linker where to put things,

sets up entry point, etc)

• By default an ELF executable is generated

• objcopy program is run which strips off extraneous ELF

headers, leaving just the raw executable

36

Startup Code

• Even regular C code doesn’t jump straight to main(),

there’s code at start that runs first to set up things

like libraries and such

• I provide boot.s

• Sets up the stack (when you boot the boot loader doesn’t

necessarily do it for you)

• Clears the bss (un-initialized variables) to zero

• Jumps to main(). Still has r0..r2 set

37

What if you want to do this in Assembly
Language

Of course you do!

38

ARM Assembly review

• ARM has 16 registers. r0 - r15. r15 is the program

counter. r14 is the stack pointer.

• arm32 has fixed 4-byte encoding (rpi also has THUMB

but we won’t be using that).

39

Defines

The .equ assembler directive is the equivalent of a C

#define
.equ GPIO_BASE , 0x20200000

.equ GPIO_GPFSEL1 , 0x04

.equ GPIO_GPSET0 , 0x1c

.equ GPIO_GPCLR0 , 0x28

40

Loading a Constant

You can use mov r0,#2048 to load small constants (#

indicates an immediate value). However long constants

won’t fit in the instruction coding. One way to load them

is to put = in front which tells the assembler to put the

value in a nearby area and do a PC-relative load.
ldr r0 ,= GPIO_BASE

41

Logical Operations
and r1 ,#1024

orr r2 ,#2048

42

Storing to a Register

There are always multiple ways to generate a constant. In

this example we want to shift 1 left by 24. A simple way

to do this is load the value, then logical shift left it to the

right position.

The str instruction stores a register to memory. The

second argument is the address; there are many possible

addressing modes, the one we are using adds a constant

offset to an address in a register.
mov r1 ,#1

lsl r1 ,#24

str r1 ,[r0 ,# GPIO_GPFSEL2]

43

Can you instead do mov r1,#(1<<24)?

44

Delaying

A simple way to create a delay is to just have a busy loop.

Move a value in, and then decrement the counter until

it hits zero. You can use a separate cmp instruction for

the compare, but ARM allows you to put “s” on the end

of an instruction to update flags. Thus below the sub

instruction will update the zero flag after each iteration,

and the bne branch-if-not-equal will check the zero flag

and loop properly.
mov r1 ,#65536

delay_loop:

subs r1,r1 ,#1

bne delay_loop

45

Looping Forever

Once our program ends we cannot exit like you normally

would; there’s no operating system to exit to. To prevent

the program just running off the end of the address space

we have an infinite loop. ARM processors support the wfe

instruction which will put the CPU in a low-power state

while waiting for something to happen. This will use less

power (hopefully) than an empty busy loop.
finished:

wfe /* wait for event */

b finished

46

