
ECE 531 – Advanced Operating
Systems
Lecture 7

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 September 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#2 was posted

• How is HW#2 going? Don’t wait until the last minute!

1



HW#1 Review

• Put your name on the assignment!

• Short answers OK, but please explain things at least a

little (more than a single word).

• Answers

◦ Benefits of OS: HW abstraction. Multi-tasking?

◦ Downsides of OS: Overhead, Timing, Nontransparency,

Single point of failure

◦ Why C?: Low-level, historical, faster

◦ Why not C?: Security risk. Lack of features?, not

2



object oriented?

◦ BeOS (Haiku), Plan9, QNX, Solaris, VxWorks,

FreeBSD

3



Note on the Documentation

• Pis have “relatively” good documentation

• It can still be vague, for example GPSET is used to set

GPIO bits. It’s listed as R/W though. What happens

when you read?

• Same, the GPLEV used to read bits. But it’s R/W.

What happens if write?

• Also the at boot / on reset state might not be true

as the firmware runs before we get a chance to access

things

4



Connecting to a Computer

• Blinky LEDs not enough.

Could have O/S communicate by Morse code on the

LED (were patches for Linux to do this at one point)

Or a PDP-11 or similar

• USB keyboard / HDMI display quite complex, thousands

of lines of code

• Network/Bluetooth/wifi not any better

• What’s the simple way to get data in/out?

• Serial ports

5



Serial Port Background

• “Serial” meaning one-bit at a time

• Extremely easy to make and program

• Back in the day spent lot of your life configuring serial

connections

• Still used a lot on embedded systems

6



Historical Serial Port Uses

• Hooking old machines together (Apple II to printer)

• Modems to connect to BBS or internet

• Programming network switches

• Computer mice

• Multiplayer-gaming

• Most uses now use USB instead (was to save on types

of cables, we see how that ended up)

7



Using Modems to Connect Computers over
Phone lines

• By the late 90s this was the primary use of serial ports

• Eventually replaced by “win-modems” that faked

everything (often poorly)

• Side story about controlling modems with serial

◦ Could send commands to modem inline while

connection open (sort of like SW flow control)

◦ HAYES modem command set. ATDT, etc.

◦ +++ *pause* ATH0

8



◦ Hayes patented the pause. What did everyone have to

do?

9



Serial Port Basics

• RS-232 was traditional interface, but modern systems

rarely implement it exactly

• Minimum three wires TX, RX, Ground

• Older systems the serial ports were 9pin or 25pin

(mostly same signals, just lots more grounds on 25pin)

• /dev/ttyS0, /dev/ttyS1 and similar (Linux)

• COM1, COM2, etc. Windows

10



Serial Signals

• TX,RX,GND (transmit, receive, ground)

• RTS,CTS (HW flow control, request to send, clear to

send)

• DSR,DTR (additional flow control: Data set ready, data

terminal ready)

• DCD (data carrier detect – modem there)

• RI (ring indicator)

11



Historical Serial Cables

PC
Device

RX

TX
RTS
CTS

• If connecting DCE (data communication equipment) to

DTE (data terminal equipment) use “straight through”

cable

• If DTE to DTE (connecting two computers) need special

loopback/null-modem cable that swaps RTS and CTS

12



Serial on-the-wire

• RS-232: +12V for 0, -12V for 1 (inverted on

transmit/receive, regular on other pins)

• Often -15V to -3V or 15V to 3V

Might work at -5V/5V

• Modern systems often don’t have negative voltages

Can instead use “TTL” 5V/0V which needs adapter to

talk to “real” serial equipment

• Raspberry pi uses 3.3V/0V so be careful

13



Flow Control

• Ability to start/stop without losing bytes

• Often multiple levels of buffering. FIFO, buffer on device,

buffer in OS.

14



Hardware Flow Control

• Needs extra signal wires

• RTS (Request to Send) and CTS (Clear to Send) Positive

or negative, one to the other

15



Software Flow Control

• ASCII DC3 (XOFF) (0x13) (control-s) stops transmission

• ASCII DC1 (XON) (0x11) (control-q) restarts

transmission

• Requires no extra wires

• What if sending binary data that contains those

characters? Must escape those.

• Note: there isn’t a standard way of escaping SW flow

control, it’s up to the application

16



Transmitting a Byte

• TX Held -12V when idle (1)

• Jumps to 12V for start bit (0)

• Bits transmitted. Low bit first. Stays at 12V if 0, -12 if

1

• Parity (simple error detection)

◦ (even, odd, stick, or none)

◦ Odd, then parity bit is included that makes the number

of 1s (including parity) odd.

◦ Even, then parity bit included that makes number of

17



1s even

◦ Stick parity (mark = always 1, space = always 0)

◦ None, save a bit and just don’t include

• Then down to -12V for stop bit(s)

• Since no clock, no way to tell difference between

consecutive bits of same value.

Both ends need to agree to speed before setting up

connection.

Starts a counter based on agreed speed and starts

counting at the start bit, samples values from there.

18



−12V

+12V

Stop Bit(s)

Start 0 1 0 1 1 0 0
Parity would go here

Value sent is 001 1010

19



Speed (flow rate)

• Most common speed in 9600 8N1

◦ 9600 = bits per second (sometimes called baud even

though that’s more complicated)

◦ 8 = bits to transmit

◦ N = no parity

◦ 1 = 1 stop bit

• 115200 is also popular, is traditionally the top speed

supported by serial

• Many modern can go much faster, even up to 4MBps.

20



Cables often not up to it as standard did not specify

twisted pair

• Common speeds 1 (115.2k), 2 (57.6k), 3 (38.4k), 6

(19.2k), 12 (9.6k), 24 (4.8k), 48 (2.4k), 96 (1.2k) 300,

110 (war games acoustic coupler)

21



Serial Hardware: UART

• Universal Asynchronous Receiver Transmitter

• Convert parallel value to serial

• Asynchronous. Why? No clock signal wire.

• Note: some embedded systems have USART

(synchronous) that do have a clock signal

22



UART FIFO

• Internal First-in-First-Out structures

• 1 byte (older) to 16 bytes

• Can generate Interrupt. Have to handle in time or else

data lost

• Why timeout? Send 1-byte typing, stall if not 15 more.

• Why FIFOs small? flow control. A byte saying to stall

sent, if large FIFO a long time before it actually gets

received

• Interrupts: when FIFO reaches a certain size, or if there’s

23



a delay. (so if someone typing slowly at the keyboard)

also when transmit FIFO empty

24



Terminal Programs

• To communicate over a serial port you need a program

that talks to the port and send/receives bytes

• learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure

• putty is a decent one for Windows

• I use minicom for Linux. A bit of a pain. Have to install

it (not by default?) Control-A Control-Z for help. Has

similar keybindings to an old DOS program Telix that I

used for years.

• “screen” on MacOS and also Linux

25

learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure


sudo screen /dev/ttyUSB0 115200

26


