ECE 531 — Advanced Operating

Systems
Lecture 9

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

22 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Homework #3 was assigned, due Friday

Serial Port Programming Aside

e Programming serial port at hardware level not so bad
e Programming from inside of Linux a huge pain
o Linux inherited old UNIX code for dealing with ttys
o ioctl/syscall interface to this is a pain, old legacy
o Designed to be overly flexible
o Just doing simple input/output to console runs into
this because it assumes every text console is a tty
o scanf (), canonical mode (line-at-time until enter)

/* example code to access serial port from Linux */
struct termios tty;

-y 2

int serial_£fd;
serial_fd=open("/dev/ttyUSBO",O0_RDWR);

tcgetattr (serial_fd ,&tty);

tty.c_cflag
tty.c_cflag
tty.c_cflag
tty.c_cflag
tty.c_cflag
tty.c_cflag

tty.c_lflag
tty.c_lflag
tty.c_lflag
tty.c_lflag
tty.c_lflag
tty.c_iflag
tty.c_iflag

tty.c_oflag
tty.c_oflag

i el R THIMES] b=
tty.c_cc[VMIN] =

// get current settings

&= "PARENB; // disable partiy
&= “CSTOPB; // one stop bit
&= ~CSIZE; // clear data size bits
|= CS8; // set 8 bits per byte
&= ~“CRTSCTS;// Disable hardware flow control
|= CREAD|CLOCAL; // Turn on READ and ignore control
&= ~ICANON; // disable canonical mode
&= ~ECHO; // disable echo
&= ~ECHOE; // disable erasure
&= ~ECHONL; // disable new-line echo
&= ~ISIG; // disable signals INTR, QUIT and SUSP
&= ~(IXON | IXOFF | IXANY); // turn off s/w flow ctrl
&= " (IGNBRK|BRKINT|PARMRK| ISTRIP|INLCR|IGNCR|ICRNL);
// disable special handling of received bytes
&= ~O0POST; // prevent special handling of recvd bytes
&= ~“ONLCR; // Prevent newline to CR/LF conversion
08 // wait up to 1s for data, return when any comes
03

in

cfsetispeed (&tty, B9600); // set input speed to 9600
cfsetospeed (&tty, B9600); // set output speed to 9600

tcsetattr(serial_port, TCSANOW, &tty); // save settings
// left out all error checking

// at this point should be able to read()/write ()

Terminal Programs

e To communicate over a serial port you need a program
that talks to the port and send/receives bytes
® [lcarn.adafruit.con/adafruits-raspberry-pi-Lesson-5-using-a-console-cable/test-and-configure
e putty is a decent one for Windows
e | use minicom for Linux. A bit of a pain. Not installed
oy default. Control-A Control-Z for help. Has similar
keybindings to old DOS program Telix
e “screen” on MacOS and also Linux
sudo screen /dev/ttyUSBO 115200

-y 5

learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure

File Transfer

e Need special protocols to send binary data, especially
if using software flow control and need to escape some
characters

e On remote connection (inside terminal) start a receiving
program that listens, gets the filename and contents,
and writes out

e On local end you tell your terminal program to send the
data

e Common methods

-y 6

o Plain ASCI|

o Kermit

o Zmodem/Xmodem/Ymodem /etc

o On Linux use sz / rz to send things via Zmodem

USB Serial Converters

e Modern machines often don’'t have serial ports

e Instead you can use USB to Serial converters

e PL2303 / FTDI chips used in these

e Often counterfeited, in the news for that recently (and
how the companies tried to kill the counterfeits)

e Takes serial in, presents as a serial port to the OS.
ttyUSB0O on Linux, COM something really high on
windows, /dev/cu.usbserial on MacOS

e |'ve tried to give everyone the same type of adapter this

-y g

year, the “Silicon Labs” type (not prolific)

HW#3: Writing header files

e Including with “ " versus <>

10

HW=#3: Writing printk

int printk(char *string,...) {

va_list ap;
va_start(ap, string);

while (1) {
if (*string==0) break;

if (*string==’7") A
string++;
if (*string==’d’) A
string++;
x=va_arg(ap, int);

11

Integer to String Conversion

This 1t the algorithm | use, there are other ways to do
it that don’'t involve the backwards step (starting off by
dividing by 1 billion and dividing the divisor by 10 each
time).

e Repeatedly divide by 10.

e Digit is the remainder. Repeat until quotient O.
e Make sure handle 0 case.

e Convert each digit to ASCII by adding 48 ('0’)
e \Why does the number end up backwards?

-y 12

HW=#3 Division by 10

e ARM1176 in Pi has no divide routine! (ARMv7/v8 does)

e Generic x=y/z division is not possible without fancy
work (iterative subtraction? Newton approximation?)
e Dividing by a constant Is easier

/Y 13

HW=+#3 Multiply by Reciprocal

e C compiler cheats, for /10 it effectively multiplies by
1/10.

e Look at generated assembly, you'll see it multiply by
0x66666667 (signed) or Oxcccccced (unsigned)

-y 14

HW+#3 How Does Compiler Handle
Division on ARM1176

e The C compiler will generate a call to the C-library or
gcc-library divide routine

e This is a problem on our own OS as we have no libraries

e If on ARM 1176 you try to use division, C compiler will
try to call something like __aeabi_uidiv() which you

have to provide.
e We can write it, either some fancy assembly, or just

Iiterative subtraction

-y 15

HW#3 Printing Hexademical Instead

e Each digit is power of 16, not 10.
Why is it not a problem when dividing by 167
e Need to handle case where digits above 9, make A-F

16

Knowing when Hardware has new Data

e [here are two ways to do this
o Polling — periodically check the hardware
difficult as you have to manually check all the time in
your code and things might get lost if you are busy
o Interrupts — the hardware sends a signal to the CPU
saying it needs attention

-y 17

Are interrupts good or bad?

e Can reduce latency... or make it worse (real-time, slow
handler)

e Can add overhead. On 000 need to flush entire pipeline,
then enter kernel. Slow slow slow.

-y 18

Can You Avoid Interrupt Overhead?

e Some HPC or virtual turn off interrupts if possible.

e Linux NAPI Interrupt Mitigation will turn off IRQs and
use polling instead when system under heavy load

e Linux tickless system will turn off regular timers to
save power/overhead by setting a timer to wake later
(allowing deeper sleep) [this is particularly useful on
systems with lots of VMs]

e Linux top-half/bottom-half: top-half receives interrupt,
handles it, does bare minimum work. Bottom-half runs

19

later when there's more time.

20

Other Interrupt Topics

e Precise interrupts — on modern out-of-order processors
it can be extremely difficult to know exactly what
instruction was running when an IRQ came in.

Does this matter? Mostly just for perf optimization

/Y 21

What generates interrupts?

e \What types of hardware generate interrupts?
Keyboard, timers, Network, Disk 1/0, serial etc.

e Some can be critical. Not empty UART FIFO fast
enough can drop data on floor.

e What is most frequent interrupt on typical OS? Timer
interrupt. regular timer. What is used for?
o Context switching
o Timekeeping, time accounting

/Y 22

Typical Interrupts

e Tell pointless 6502/Mockingboard example

e Set up interrupt source (Timer at 50Hz?)

e Install interrupt handler (usually vector at address that
jumps to your code to handle things)

o Handler should be fast, do whatever it needs to do (my
case, load up 14 registers with data) or even schedule
more work than later

o Disable interrupts if HW didn’t for us. Save/restore
any registers we're going to change so when we return

/Y 23

no one notices

o Handler should ACK the interrupt (let hardware know
we handled things so it doesn't retrigger as soon as we
exit)

e Enable interrupts (often need to do this two ways)

o On device (often a flag to set)

o Enable (unmask) interrupts on your CPU. Often a
processor flag.

-y 24

Exceptions and Interrupts

e All architectures are different
e ARM does it a little differently from others.

e Note ARM32 on Cortex-A (this class) can be different
than Cortex-M (like the STM32 boards in 271)

e Possibly also different in ARM64

-y 25

How to find out?

e ARM ARM for ARMv7 (27004 pages)
e Look at Linux source code
e Look at Raspberry Pi Forums

e Note Pi4 has extra gic-400 interrupt controller you need
to enable

/Y 26

