
ECE 531 – Advanced Operating
Systems
Lecture 9

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #3 was assigned, due Friday

1

Serial Port Programming Aside

• Programming serial port at hardware level not so bad

• Programming from inside of Linux a huge pain

◦ Linux inherited old UNIX code for dealing with ttys

◦ ioctl/syscall interface to this is a pain, old legacy

◦ Designed to be overly flexible

◦ Just doing simple input/output to console runs into

this because it assumes every text console is a tty

◦ scanf(), canonical mode (line-at-time until enter)

/* example code to access serial port from Linux */

struct termios tty;

2

int serial_fd;

serial_fd=open("/dev/ttyUSB0",O_RDWR);

tcgetattr(serial_fd ,&tty); // get current settings

tty.c_cflag &= ~PARENB; // disable partiy

tty.c_cflag &= ~CSTOPB; // one stop bit

tty.c_cflag &= ~CSIZE; // clear data size bits

tty.c_cflag |= CS8; // set 8 bits per byte

tty.c_cflag &= ~CRTSCTS;// Disable hardware flow control

tty.c_cflag |= CREAD|CLOCAL; // Turn on READ and ignore control

tty.c_lflag &= ~ICANON; // disable canonical mode

tty.c_lflag &= ~ECHO; // disable echo

tty.c_lflag &= ~ECHOE; // disable erasure

tty.c_lflag &= ~ECHONL; // disable new -line echo

tty.c_lflag &= ~ISIG; // disable signals INTR , QUIT and SUSP

tty.c_iflag &= ~(IXON | IXOFF | IXANY); // turn off s/w flow ctrl

tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);

// disable special handling of received bytes

tty.c_oflag &= ~OPOST; // prevent special handling of recvd bytes

tty.c_oflag &= ~ONLCR; // Prevent newline to CR/LF conversion

tty.c_cc[VTIME] = 10; // wait up to 1s for data , return when any comes in

tty.c_cc[VMIN] = 0;

3

cfsetispeed (&tty , B9600); // set input speed to 9600

cfsetospeed (&tty , B9600); // set output speed to 9600

tcsetattr(serial_port , TCSANOW , &tty); // save settings

// left out all error checking

// at this point should be able to read ()/ write()

4

Terminal Programs

• To communicate over a serial port you need a program

that talks to the port and send/receives bytes

• learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure

• putty is a decent one for Windows

• I use minicom for Linux. A bit of a pain. Not installed

by default. Control-A Control-Z for help. Has similar

keybindings to old DOS program Telix

• “screen” on MacOS and also Linux

sudo screen /dev/ttyUSB0 115200

5

learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure

File Transfer

• Need special protocols to send binary data, especially

if using software flow control and need to escape some

characters

• On remote connection (inside terminal) start a receiving

program that listens, gets the filename and contents,

and writes out

• On local end you tell your terminal program to send the

data

• Common methods

6

◦ Plain ASCII

◦ Kermit

◦ Zmodem/Xmodem/Ymodem/etc

◦ On Linux use sz / rz to send things via Zmodem

7

USB Serial Converters

• Modern machines often don’t have serial ports

• Instead you can use USB to Serial converters

• PL2303 / FTDI chips used in these

• Often counterfeited, in the news for that recently (and

how the companies tried to kill the counterfeits)

• Takes serial in, presents as a serial port to the OS.

ttyUSB0 on Linux, COM something really high on

windows, /dev/cu.usbserial on MacOS

• I’ve tried to give everyone the same type of adapter this

8

year, the “Silicon Labs” type (not prolific)

9

HW#3: Writing header files

• Including with “ ” versus <>

10

HW#3: Writing printk
int printk(char *string ,...) {

va_list ap;

va_start(ap, string);

while (1) {

if (* string ==0) break;

if (* string ==’%’) {

string ++;

if (* string ==’d’) {

string ++;

x=va_arg(ap, int);

11

Integer to String Conversion

This it the algorithm I use, there are other ways to do

it that don’t involve the backwards step (starting off by

dividing by 1 billion and dividing the divisor by 10 each

time).

• Repeatedly divide by 10.

• Digit is the remainder. Repeat until quotient 0.

• Make sure handle 0 case.

• Convert each digit to ASCII by adding 48 (’0’)

• Why does the number end up backwards?

12

HW#3 Division by 10

• ARM1176 in Pi has no divide routine! (ARMv7/v8 does)

• Generic x=y/z division is not possible without fancy

work (iterative subtraction? Newton approximation?)

• Dividing by a constant is easier

13

HW#3 Multiply by Reciprocal

• C compiler cheats, for /10 it effectively multiplies by

1/10.

• Look at generated assembly, you’ll see it multiply by

0x66666667 (signed) or 0xcccccccd (unsigned)

14

HW#3 How Does Compiler Handle
Division on ARM1176

• The C compiler will generate a call to the C-library or

gcc-library divide routine

• This is a problem on our own OS as we have no libraries

• If on ARM 1176 you try to use division, C compiler will

try to call something like aeabi uidiv() which you

have to provide.

• We can write it, either some fancy assembly, or just

iterative subtraction

15

HW#3 Printing Hexademical Instead

• Each digit is power of 16, not 10.

Why is it not a problem when dividing by 16?

• Need to handle case where digits above 9, make A-F

16

Knowing when Hardware has new Data

• There are two ways to do this

◦ Polling – periodically check the hardware

difficult as you have to manually check all the time in

your code and things might get lost if you are busy

◦ Interrupts – the hardware sends a signal to the CPU

saying it needs attention

17

Are interrupts good or bad?

• Can reduce latency... or make it worse (real-time, slow

handler)

• Can add overhead. On OoO need to flush entire pipeline,

then enter kernel. Slow slow slow.

18

Can You Avoid Interrupt Overhead?

• Some HPC or virtual turn off interrupts if possible.

• Linux NAPI Interrupt Mitigation will turn off IRQs and

use polling instead when system under heavy load

• Linux tickless system will turn off regular timers to

save power/overhead by setting a timer to wake later

(allowing deeper sleep) [this is particularly useful on

systems with lots of VMs]

• Linux top-half/bottom-half: top-half receives interrupt,

handles it, does bare minimum work. Bottom-half runs

19

later when there’s more time.

20

Other Interrupt Topics

• Precise interrupts – on modern out-of-order processors

it can be extremely difficult to know exactly what

instruction was running when an IRQ came in.

Does this matter? Mostly just for perf optimization

21

What generates interrupts?

• What types of hardware generate interrupts?

Keyboard, timers, Network, Disk I/O, serial etc.

• Some can be critical. Not empty UART FIFO fast

enough can drop data on floor.

• What is most frequent interrupt on typical OS? Timer

interrupt. regular timer. What is used for?

◦ Context switching

◦ Timekeeping, time accounting

22

Typical Interrupts

• Tell pointless 6502/Mockingboard example

• Set up interrupt source (Timer at 50Hz?)

• Install interrupt handler (usually vector at address that

jumps to your code to handle things)

◦ Handler should be fast, do whatever it needs to do (my

case, load up 14 registers with data) or even schedule

more work than later

◦ Disable interrupts if HW didn’t for us. Save/restore

any registers we’re going to change so when we return

23

no one notices

◦ Handler should ACK the interrupt (let hardware know

we handled things so it doesn’t retrigger as soon as we

exit)

• Enable interrupts (often need to do this two ways)

◦ On device (often a flag to set)

◦ Enable (unmask) interrupts on your CPU. Often a

processor flag.

24

Exceptions and Interrupts

• All architectures are different

• ARM does it a little differently from others.

• Note ARM32 on Cortex-A (this class) can be different

than Cortex-M (like the STM32 boards in 271)

• Possibly also different in ARM64

25

How to find out?

• ARM ARM for ARMv7 (2700+ pages)

• Look at Linux source code

• Look at Raspberry Pi Forums

• Note Pi4 has extra gic-400 interrupt controller you need

to enable

26

