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Announcements

• Homework #3 was assigned, due Friday
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Serial Port Programming Aside

• Programming serial port at hardware level not so bad

• Programming from inside of Linux a huge pain

◦ Linux inherited old UNIX code for dealing with ttys

◦ ioctl/syscall interface to this is a pain, old legacy

◦ Designed to be overly flexible

◦ Just doing simple input/output to console runs into

this because it assumes every text console is a tty

◦ scanf(), canonical mode (line-at-time until enter)

/* example code to access serial port from Linux */

struct termios tty;
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int serial_fd;

serial_fd=open("/dev/ttyUSB0",O_RDWR );

tcgetattr(serial_fd ,&tty); // get current settings

tty.c_cflag &= ~PARENB; // disable partiy

tty.c_cflag &= ~CSTOPB; // one stop bit

tty.c_cflag &= ~CSIZE; // clear data size bits

tty.c_cflag |= CS8; // set 8 bits per byte

tty.c_cflag &= ~CRTSCTS;// Disable hardware flow control

tty.c_cflag |= CREAD|CLOCAL; // Turn on READ and ignore control

tty.c_lflag &= ~ICANON; // disable canonical mode

tty.c_lflag &= ~ECHO; // disable echo

tty.c_lflag &= ~ECHOE; // disable erasure

tty.c_lflag &= ~ECHONL; // disable new -line echo

tty.c_lflag &= ~ISIG; // disable signals INTR , QUIT and SUSP

tty.c_iflag &= ~(IXON | IXOFF | IXANY); // turn off s/w flow ctrl

tty.c_iflag &= ~( IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);

// disable special handling of received bytes

tty.c_oflag &= ~OPOST; // prevent special handling of recvd bytes

tty.c_oflag &= ~ONLCR; // Prevent newline to CR/LF conversion

tty.c_cc[VTIME] = 10; // wait up to 1s for data , return when any comes in

tty.c_cc[VMIN] = 0;
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cfsetispeed (&tty , B9600 ); // set input speed to 9600

cfsetospeed (&tty , B9600 ); // set output speed to 9600

tcsetattr(serial_port , TCSANOW , &tty); // save settings

// left out all error checking

// at this point should be able to read ()/ write()
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Terminal Programs

• To communicate over a serial port you need a program

that talks to the port and send/receives bytes

• learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure

• putty is a decent one for Windows

• I use minicom for Linux. A bit of a pain. Not installed

by default. Control-A Control-Z for help. Has similar

keybindings to old DOS program Telix

• “screen” on MacOS and also Linux

sudo screen /dev/ttyUSB0 115200
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File Transfer

• Need special protocols to send binary data, especially

if using software flow control and need to escape some

characters

• On remote connection (inside terminal) start a receiving

program that listens, gets the filename and contents,

and writes out

• On local end you tell your terminal program to send the

data

• Common methods
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◦ Plain ASCII

◦ Kermit

◦ Zmodem/Xmodem/Ymodem/etc

◦ On Linux use sz / rz to send things via Zmodem
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USB Serial Converters

• Modern machines often don’t have serial ports

• Instead you can use USB to Serial converters

• PL2303 / FTDI chips used in these

• Often counterfeited, in the news for that recently (and

how the companies tried to kill the counterfeits)

• Takes serial in, presents as a serial port to the OS.

ttyUSB0 on Linux, COM something really high on

windows, /dev/cu.usbserial on MacOS

• I’ve tried to give everyone the same type of adapter this
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year, the “Silicon Labs” type (not prolific)
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HW#3: Writing header files

• Including with “ ” versus <>
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HW#3: Writing printk
int printk(char *string ,...) {

va_list ap;

va_start(ap, string );

while (1) {

if (* string ==0) break;

if (* string ==’%’) {

string ++;

if (* string ==’d’) {

string ++;

x=va_arg(ap, int);
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Integer to String Conversion

This it the algorithm I use, there are other ways to do

it that don’t involve the backwards step (starting off by

dividing by 1 billion and dividing the divisor by 10 each

time).

• Repeatedly divide by 10.

• Digit is the remainder. Repeat until quotient 0.

• Make sure handle 0 case.

• Convert each digit to ASCII by adding 48 (’0’)

• Why does the number end up backwards?
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HW#3 Division by 10

• ARM1176 in Pi has no divide routine! (ARMv7/v8 does)

• Generic x=y/z division is not possible without fancy

work (iterative subtraction? Newton approximation?)

• Dividing by a constant is easier
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HW#3 Multiply by Reciprocal

• C compiler cheats, for /10 it effectively multiplies by

1/10.

• Look at generated assembly, you’ll see it multiply by

0x66666667 (signed) or 0xcccccccd (unsigned)
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HW#3 How Does Compiler Handle
Division on ARM1176

• The C compiler will generate a call to the C-library or

gcc-library divide routine

• This is a problem on our own OS as we have no libraries

• If on ARM 1176 you try to use division, C compiler will

try to call something like aeabi uidiv() which you

have to provide.

• We can write it, either some fancy assembly, or just

iterative subtraction
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HW#3 Printing Hexademical Instead

• Each digit is power of 16, not 10.

Why is it not a problem when dividing by 16?

• Need to handle case where digits above 9, make A-F
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Knowing when Hardware has new Data

• There are two ways to do this

◦ Polling – periodically check the hardware

difficult as you have to manually check all the time in

your code and things might get lost if you are busy

◦ Interrupts – the hardware sends a signal to the CPU

saying it needs attention
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Are interrupts good or bad?

• Can reduce latency... or make it worse (real-time, slow

handler)

• Can add overhead. On OoO need to flush entire pipeline,

then enter kernel. Slow slow slow.

18



Can You Avoid Interrupt Overhead?

• Some HPC or virtual turn off interrupts if possible.

• Linux NAPI Interrupt Mitigation will turn off IRQs and

use polling instead when system under heavy load

• Linux tickless system will turn off regular timers to

save power/overhead by setting a timer to wake later

(allowing deeper sleep) [this is particularly useful on

systems with lots of VMs]

• Linux top-half/bottom-half: top-half receives interrupt,

handles it, does bare minimum work. Bottom-half runs
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later when there’s more time.
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Other Interrupt Topics

• Precise interrupts – on modern out-of-order processors

it can be extremely difficult to know exactly what

instruction was running when an IRQ came in.

Does this matter? Mostly just for perf optimization
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What generates interrupts?

• What types of hardware generate interrupts?

Keyboard, timers, Network, Disk I/O, serial etc.

• Some can be critical. Not empty UART FIFO fast

enough can drop data on floor.

• What is most frequent interrupt on typical OS? Timer

interrupt. regular timer. What is used for?

◦ Context switching

◦ Timekeeping, time accounting
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Typical Interrupts

• Tell pointless 6502/Mockingboard example

• Set up interrupt source (Timer at 50Hz?)

• Install interrupt handler (usually vector at address that

jumps to your code to handle things)

◦ Handler should be fast, do whatever it needs to do (my

case, load up 14 registers with data) or even schedule

more work than later

◦ Disable interrupts if HW didn’t for us. Save/restore

any registers we’re going to change so when we return
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no one notices

◦ Handler should ACK the interrupt (let hardware know

we handled things so it doesn’t retrigger as soon as we

exit)

• Enable interrupts (often need to do this two ways)

◦ On device (often a flag to set)

◦ Enable (unmask) interrupts on your CPU. Often a

processor flag.
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Exceptions and Interrupts

• All architectures are different

• ARM does it a little differently from others.

• Note ARM32 on Cortex-A (this class) can be different

than Cortex-M (like the STM32 boards in 271)

• Possibly also different in ARM64
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How to find out?

• ARM ARM for ARMv7 (2700+ pages)

• Look at Linux source code

• Look at Raspberry Pi Forums

• Note Pi4 has extra gic-400 interrupt controller you need

to enable

26


