
ECE 531 – Advanced Operating
Systems

Lecture 10

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#3

◦ Serial ports can be tricky, don’t put the assignment off

◦ You’ll be using the serial port for all the future

homeworks

• HW#2 still being graded (UMaine network troubles last

night delayed things)

1

HW#2 Review – Code

• Still finishing grading this part

• A bit slow to grade with a lot of SD-card swapping

2

HW#2 Review – Filesize

• Size: C code 180 bytes, assembly 84 bytes

• Note if you use a global variable C code will bump up to

4k because the data segment gets aligned

• Linux kernel is 7megabytes or so

3

HW#2 Review – Why is C bigger?

• Can look at .dis files for disassembly

• Init: C has 60 bytes to set things up, assembly has none

• Delay: C 64 bytes due to pessimization from volatile

(has to load/store load/store i over and over) asm 12

bytes

• C also saves/restores LR and registers to maintain calling

convention.

4

HW#2 Review – Other questions

• volatile – have C compiler not optimize away stores

• C array of 32-bit ints vs actually byte-wise access

• ALT4 on GPIO18 is SPI1 CEN 0

◦ This is chip select for an SPI bus

◦ Many, many people got this wrong, instead reporting

the ALT0 or ALT5 values. Not sure why as it’s a

simple table lookup in the manual

5

ARM has various Modes

• Modes:

• States

◦ ISA: ARM (normal), Thumb, Jazelle, ThumbEE

◦ Execution state (?)

◦ Security: Secure and Non-secure

• Privilege Level

◦ If secure: PL0 = user, PL1 = kernel

◦ If non-secure: PL0 = user, PL1 = kernel, PL2 =

hypervisor

6

ARM Modes

User PL0

FIQ PL1 fast interrupt

IRQ PL1 interrupt

SVC PL1 supervisor

MON PL1 monitor (only if security extensions)

ABT PL1 abort

UND PL1 undefined instruction

SYS PL1 system

HYP PL2 hypervisor (only if virtual extensions)

7

ARM Modes – continued

• User mode – unprivileged, restricted. Can only move to

higher level by exception.

• System Mode – like USER, but no restrictions on

memory/registers. Sort of like running as root, cannot

enter by exception.

• Supervisor – kernel mode. SVC (syscall) instructions

take you here. Also at reset (boot).

• Abort – called if a memory or prefetch causes an

exception

8

why is this useful? Virtual memory.

• Undefined – called when undefined instruction happens

why is this useful? Emulator?

• FIQ/IRQ – fast or normal interrupt

• HYP – hypervisor, for virtualization. A bit beyond this

class

Due to change in firmware newer Pis boot into this mode

• Secure – secure mode, can lock things down.

9

ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Thumb

Processor
Mode

Condition

 Flags

2527 2324

Q IT J A

8

E

91015

IT

1619

GE[3..0]
RESERVED

RAZ/SBZP

Interrupt Masks

EndianThumb If/Then

Saturation

Jazelle Greater/Equal

SIMD

• Current Program Status Register

• Contains flags in addition to processor mode

• Six privileged modes

• One non-privileged: user (cannot write CPSR), now

APSR?

• Interrupts and exceptions automatically switch modes

10

ARM Interrupt Registers
User/Sys Hyp Fast IRQ Supervisor Undefined Abort Monitor

r0
r1
r2
r3
r4
r5
r6
r7

r8 r8 fiq
r9 r9 fiq
r10 r10 fiq
r11 r11 fiq
r12 r12 fiq

r13/sp SP hyp SP fiq SP irq SP svc SP und SP abt SP mon
r14/lr LR fiq LR irq LR svc LR und LR abt LR mon
r15/pc

apsr

cpsr spsr hyp spsr fiq spsr irq spsr svc spsr und spsr abt spsr mon
ELR hyp

11

ARM Interrupt Handling

• Unlike other architectures, when switching modes the

ARM hardware will preserve the status register, PC and

stack and give you mode-specific versions (register bank

switching).

• Also for Fast Interrupts r8-r12 are saved as well, allowing

fast handlers that do not have to save registers to the

stack.

12

ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table

13

Vector Table

Type Type Offset LR Priority

Reset SVC 0x0 – 1

Undefined Instruction UND 0x04 lr-4/2 6

Software Interrupt SVC 0x08 lr 6

Prefetch Abort ABT 0x0c lr-4 5

Data Abort ABT 0x10 lr-8 2

UNUSED – 0x14 – –

IRQ IRQ 0x18 lr-4 4

FIQ FIQ 0x1c lr-4 3

14

• See ARM ARM ARMv7 documentation for details.

• NOTE: contains a 4-byte instruction, not an address

• Location defaults to 0x000000

if SCTL.V is 1 “high-vector” 0xffff0000

• If security mode implemented more complex, separate

vectors for secure/nonsecure, and on nonsecure the

SCTL.V lets you set it anywhere via VBAR

• Interrupts: IRQ = general purpose hardware,

FIQ = fast interrupt for really fast response (only 1),

SWI = syscalls, talk to OS

• FIQ mode auto-saves r8-r12.

15

Complications

• What about thumb or endian mode when call into

interrupt? Depends on flags in SCTLR register

16

Interrupt Stacks

• Stack pointer changes when handle interrupt (why?)

• Need to set that up in advance, before interrupts enabled

• Why does kernel have own stack pointer? Why not use

the user stack? Does the user stack pointer always have

to be valid?

17

Ways to return from IRQ

• Regular function return not enough, need to change

mode and adjust LR

• subs pc,lr,#4

Sneakily branches and gets the right status register

(special case when S in SUBS and PC is destination)

• sub lr,lr,#4

. . .

movs pc,lr (or rfe)

• Another stores lr and other things to stack, then restores

18

sub lr,lr,#4

stmbd sp!,{r0-r12,lr}
. . .

ldmfd sp!,{r0-r12,pc}^
The caret means to load cpsr from spsr

Exclamation point means to update sp after popping.

19

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with

an attribute. Automatically restores to right address.
void function () __attribute__ ((interrupt ("IRQ")));

/* Can be IRQ , FIQ , SWI , ABORT and UNDEF */

void __attribute__ ((interrupt("UNDEF"))) undefined_instruction_vector(void) {

while (1) {

/* Do Nothing */

}

}

20

Getting Interrupt to Happen

• Initialize (set up vectors and stacks)

• Enable Interrupt at Pi Level

• Enable Interrupt at Device Level

• Enable Global interrupts at ARM Level

21

Raspberry Pi Interrupts

• See Section 7 of BCM2835 doc (though it’s not well

written)

• Up to 64 possible, but only subset available to ARM

chip (rest belong to GPU)

• MMIO Registers used to configure:

◦ Basic pending: 32-bit field with most common IRQ

sources

◦ Full pending: two 32-bit registers a bit for each IRQ

source and whether triggered

22

◦ FIQ register: can pick which one is FIQ

◦ Enable register: to set which interrupts are enabled

◦ Disable register

• You also have to enable interrupts on the device too

• On Pi4 need to enable gic-400 interrupt controller too

23

Initializing

• How do we get the vectors to address 0x0?

Copy it there after the fact. Hard part is if we want the

routines to be C code.

• Clever, have the reset vector point to start of code, so

you can have the reset vector of beginning of code and

it will jump to the right location.

• ldr does a PC-relative load, so as long as we copy the

vectors at the same offset will work

• Leave at entry point, and first one is reset, so at boot

24

we jump to reset

_start:

ldr pc , reset_addr

ldr pc , undefined_addr

ldr pc , software_interrupt_addr

ldr pc , prefetch_abort_addr

ldr pc , data_abort_addr

ldr pc , unused_addr

ldr pc , interrupt_addr

ldr pc , fast_interrupt_addr

reset_addr: .word reset

undefined_addr: .word undefined_instruction

software_interrupt_addr: .word software_interrupt

prefetch_abort_addr: .word prefetch_abort

data_abort_addr: .word data_abort

unused_addr: .word reset

interrupt_addr: .word interrupt

fast_interrupt_addr: .word fast_interrupt

_start:

...

reset:

25

ldr r3 , =_start

mov r4 , #0 x0000

ldmia r3!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

stmia r4!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

ldmia r3!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

stmia r4!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

26

Setting up the Stacks

• Need chunk of memory for each stack

• Temporarily switch to mode, then set the stack pointer

• You can manually (without getting an interrupt) set

the CPSR value with a msr instruction (move to status

register)

• We start in SVC mode (Well, on pi2+newer HYP mode)

but we can get to a mode where we can change CPSR

27

Pi1-B+ Memory Map

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

28

Code to Set up the Stacks
/* Set up the Interrupt Mode Stack */

/* First switch to interrupt mode , then update stack pointer */

/* cpsr_c means just change the config (mode) part of the cpsr */

mov r3 , #(CPSR_MODE_IRQ | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISABLE)

msr cpsr_c , r3

mov sp , #0 x4000

/* Switch back to supervisor mode */

mov r3 , #(CPSR_MODE_SVC | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISABLE)

msr cpsr_c , r3

29

