
ECE 531 – Advanced Operating
Systems

Lecture 11

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 September 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #3 Due Today

• Homework #4 will be posted

1

Last minute HW#3 Hints

• If get blank screen in terminal, try typing some stuff or

hitting enter a few times, possibly the boot messages

printed before your USB serial port came up

2

HW#2 Code Graded

• Mostly fine, but many people had timings for the blink

that was way off of 1Hz

• Note you’ll need different constants for ASM and C.

Look at the code, the C code generally is doing more

instructions which will take longer

3

Timer interrupt

• Most OSes have some sort of internal timer keeping

things going

• Tracks time of day, triggers scheduler (for context

switching), uptime, time accounting

• Ideally triggered as a regular interrupt

4

Timer interrupt – Linux

• Traditionally 100Hz, these days 250Hz?

◦ Too slow and the delay in context switching is

noticeable

◦ Too fast and the overhead from each interrupt adds

up (have to stop CPU, save/restore state, etc)

• Interrupts can waste power, especially if machine is

mostly idle/sleeping

Linux these days has ways to run without timer-ticks

• Trivia, timer tick on Linux called a jiffie

5

Timer interrupt – Other Operating Systems

• DOS = 18.2Hz

• Windows = 64Hz

6

OS Timekeeping

• Hardware will often have a battery-backed RTC (real

time clock) that tracks time/date, often this is only read

once at boot

• The OS generally has the job of tracking time

• Often it’s just a second timer counting from an “epoch”

(start date). On 100Hz system, every 100 interrupts

increment the seconds count.

• There are routines that convert this to the date/time.

Date/time code is a huge mess a bit beyond this class

7

(handle things like leap years, leap seconds, timezones,

calendar changes, etc)

8

Linux 2038 Problem

• For Linux/UNIX the epoch is Jan 1st 1970

• On 32-bit systems the seconds counter (returned by

time()) is a signed integer which will overflow when it

hits 231 (a bit more than 2 billion seconds)

• This happens in January 2038 which is sooner than you’d

think

• There is work to avoid this problem (if you are all 64-bit

you avoid most of it) but still working

• This generations Y2K

9

• Why didn’t they think again? The Unix developers

probably didn’t expect people would still be using their

code 60 years later.

10

Configuring an ARM Timer

• Section 14 of BCM2835 Peripheral manual.

• Similar, but not exactly the same, as an ARM SP804

• There are also the system timers (4 timers described in

Section 12).

• Note that the timer we use is based on the APB clock

which ticks at 250MHz

• Limitations: it scales with the system clock, so frequency

might change

• Also has free running timer (we don’t use)

11

BCM2835 Timer Registers

• TIMER LOAD: set a value and it will count down on

each tick and give interrupt when zero. Automatically

re-loaded after interrupt.

• TIMER CONTROL: start/stop, IRQs on/off, scaling

• TIMER RELOAD: queue a different value to be loaded

into TIMER LOAD automatically when current hits zero

• TIMER IRQ CLEAR: clears the interrupt

• TIMER PRE DIVIDE: another divider, as original design

was for 1MHz clock

12

BCM2835 Timer Initialization Code

/* Timer is based on the APB bus clock which is 250 MHz on Rasp -Pi */

uint32_t old;

/* Disable the clock before changing config */

old=bcm2835_read(TIMER_CONTROL);

old &=~(TIMER_CONTROL_ENABLE|TIMER_CONTROL_INT_ENABLE);

bcm2835_write(TIMER_CONTROL ,old);

/* First we scale this down to 1MHz using the pre -divider */

/* We want to /250. The pre -divider adds one , so 249 = 0xf9 */

bcm2835_write(TIMER_PREDIVIDER ,0xf9);

/* We enable the /256 prescalar */

/* So final frequency = 1MHz /256/61 = 64.04 Hz */

/* The value is loaded into TIMER_LOAD and then it counts down */

/* and interrupts once it hits zero. */

/* Then this value is automatically reloaded and restarted */

13

bcm2835_write(TIMER_LOAD ,61);

/* Enable the timer in 32-bit mode , enable interrupts */

/* And pre -scale the clock down by 256 */

bcm2835_write(TIMER_CONTROL ,

TIMER_CONTROL_32BIT | /* In manual 23bit typo */

TIMER_CONTROL_ENABLE |

TIMER_CONTROL_INT_ENABLE |

TIMER_CONTROL_PRESCALE_256);

14

BCM2835 Enable IRQ Controller

• In addition to enabling interrupts on the UART (see

previous slide) we also have to tell the BCM2835 IRQ

controller to let serial interrupts through

/* Enable timer interrupt */

bcm2835_write(IRQ_ENABLE_BASIC_IRQ ,IRQ_ENABLE_BASIC_IRQ_ARM_TIMER);

15

Pi Sample Path through an Interrupt

• HARDWARE: something triggers an interrupt

• DEVICE: passes IRQ request to IRQ controller

• IRQ CONTROLLER: passes IRQ request to CPU

• CPU:

◦ Saves CPSR to proper SPSR

◦ Saves PC to banked LR, loads banked stack pointer

◦ Switches CPSR to correct mode

◦ Jumps to proper entry in IRQ vector table

• IRQ HANDLER (your code):

16

◦ Code should save any registers you overwrite (note if

FIR then some are auto-saved)

(no need to save SPSR unless nested)

gcc can do this for you

◦ Check interrupt source and call the proper handler (or

give error if unknown)

◦ ACKnowledge (turn off) the interrupt at the device

level

◦ Handle the interrupt

◦ Restore registers, return to proper address (LR + some

offset)

17

• CPU: switches back mode, restores registers, restart

execution where we were when interrupted.

18

Sample Interrupt Handler
void __attribute__ ((interrupt("IRQ"))) interrupt_vector(void) {

static int num_irqs = 0;

int which;

/* Check to see which interrupt happened */

which=bcm2835_read(IRQ_BASIC_PENDING);

if (which & IRQ_BASIC_PENDING_TIMER) {

/* Clear (ACK) the Timer interrupt */

bcm2835_write(TIMER_IRQ_CLEAR ,0x1);

/* increment IRQ count */

num_irqs ++;

/* Every 64th IRQ print a message */

if (num_irqs %64==0) {

printk("We␣had␣an␣interrupt !\n");

}

}

19

Enabling/Disabling IRQs on CPU – ARMv5
and Earlier

This works by reading out the CPSR register and using bit

manipulation to set/clear the interrupt enable flags
static inline uint32_t get_CPSR(void) {

uint32_t temp;

asm volatile ("mrs␣%0,CPSR":"=r" (temp):) ;

return temp;

}

static inline void set_CPSR(uint32_t new_cpsr) {

asm volatile ("msr␣CPSR_cxsf ,%0"::"r"(new_cpsr));

}

/* enable interrupts */

static inline void enable_interrupts(void){

uint32_t temp;

temp = get_CPSR ();

20

set_CPSR(temp & ~0x80);

}

21

Enabling/Disabling IRQs on CPU – ARMv6
and Later

• CPSIE (Change Processor State Interrupt Enable)

• CPSID (Change Processor State Interrupt Disable)

• List which to enable/disable from list I=interrupts,

F=fast interrupt, A=aborts

asm volatile ("cpsid␣i"::); // disable irqs

asm volatile ("cpsie␣i"::); // enable irqs

22

HW#4

• Now we know enough to start HW#4

• Set up a system timer that ticks at 64Hz

• Have the timer interrupt handler toggle the ACT LED

on and off

• Additionally enhance the command line interpreter

23

Changes for HW#4

• In case you want to re-use your HW#3 code

• Autodetects Pi model

◦ sets up io base for you

◦ sets up various pi4 things if it sees you have one

◦ This required adding a lot of code, including device

tree support

• uart write() will automatically insert the carriage return

(\r) for you if it sees a linefeed

24

HW#4 – Device Tree

• The “new” way of providing hardware info to the kernel

for an ARM machine

• Replaces ATAGS

• Microsoft is pushing ACPI support instead :(

• Parser isn’t too horrible, mostly key/value pairs

• There’s a long complex spec, it’s based on powerpc stuff

from a while ago

• For now we just grab the device type but could also grab

io base, etc

25

HW#4 – Device Tree

• You can find the device files on /boot with the dts

ending

• If on a raspberry pi you can use the dtc tool to look at

the contents (they are packed before using)

dtc -O dts FILE.DTC

• TODO: provide a sample chunk from the Pi-1B+

26

HW#4 – Writing a shell

• What is a shell, or monitor routine?

• How can you parse a command line?

• Read values into a buffer. When enter pressed, check

for a command. strcmp()? By hand? strtok() if fancy?

• Do whatever the command indicates, then reset buffer

pointer.

• Print an error if unknown command.

27

HW#4 – Reading a Line

• Have a buffer

• Do a uart getc();

• If nothing special, put it in buffer and increment

• If CR/LF then done with line. Be sure to NUL terminate

• Call parser to parse line

• When gets back be sure to reset pointer to start of buffer

28

HW#4 – Parsing a Line

• How do you check what was entered using C?

• strcmp()? strtok()?

Remember we have to write the C library ourself

• I provide a string.c that provides some routines

• For this homework it might be easy enough to just check

manually instead

• Simple way to do things is to manually check, like

if ((buffer[0]==’l’) && (buffer[1]==’s’)) something;

29

HW#4 – String manipulation

• Most C-based OSes quickly obtain string manipulation

functions

• strncmp(), strlen(), strncpy(), memcpy(), memset(),

memcpy()

• What’s the different between strncpy and memcpy?

• How optimized do these routines need to be?

• memcpy() is often short blast of C
for(i=0;i<n;i++) { *d=*s; d++; s++;}

but it can be optimized to death.

30

• memcpu() / memmove() difference? Why it’s there,

hazard when you don’t use it right? (memmove the areas

can overlap) (what happens if you copy backwards)

31

HW#4 – First Command

• Ask you to implement “print” which just prints Hello

World

• If anything else typed, print Unknown command

32

HW#4 – Something Cool

• Add command of your choice

• Also add this to the provided “help” command so I can

see what you did when grading.

33

HW#4 – LED routines

• I added LED routines in led.c along with gpio.c

• This abstracts the code away, so it should work on any

kind of Pi transparently (though very slightly slower than

direct coding it)

34

