
ECE 531 – Advanced Operating
Systems

Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 September 2025

Announcements

• Homework #4 will be posted (sorry for the delay)

1

Interrupt Roundup

Any questions on interrupts?

2

Timer IRQs Critical

• I think I mentioned previously, but it’s extremely difficult

to make a good multi-tasking OS on hardware without

a timer interrupt

3

Interrupts On Pi-1B

• TODO: verify this info and make diagrams

• On Original Pi1, one interrupt controller. Peripheral

interrupts fed into interrupt controller, which generated

the IRQ/FIQ lines to the single CPU

4

Interrupts On Pi-2/3

• TODO: digram

• On these machines multicore (4 cores)

• Which CPU gets an interrupt? Only core0? All of them?

Rotate between them? There are reasons to do any of

those.

• Each core has own “local” interrupt controller?

• Each core has own source of interrupts (PMU, timer)

that get fed into controller along with peripheral

interrupts, which then generate IRQ/FIQ?

5

Interrupts On Pi-4

• On Pi4 same as Pi2/Pi3 but a GIC-400 global interrupt

controller is added.

• The peripheral interrupts feed into both the legacy and

GIC-400.

• Things like ARM timer can be handled either by legacy

(have to enable that input on GIC-400) or also handled

directly by the IRQ feeding into GIC

• Extremely complex to get working right

6

Interrupts On Pi-5

• I think it has all changed again, I have not had much

time to investigate

7

Timers On Raspberry Pis

• ARM sp084 timer

◦ Available all models BCM2835 Chapter 14, BCM2711

Chapter 12

◦ Based on 250MHz bus? Different on some models?

◦ Simple countdown with auto-reload timer, and

interrupts

◦ The timer’s location in the interrupt pending map

changed in the Pi4

• System Timer

8

◦ Available all models? BCM2835 Chapter 12,

BCM2711 Chapter 10

◦ Single free-running 64-bit counter

◦ 4 32-bit compare registers that can generate interrupt

when matches the bottom 64 bits

◦ Based on which clock source?

• Local Timer

◦ Only pi2 and newer?

BCM2711 Chapter 6, BCM2836

◦ per-core?

◦ which clock?

9

◦ Scaled on Cortex A7?

◦ Note, access to these is not via the peripheral area but

in the special local cpu area

10

Interrupts Schemes

• More info on nested interrupts

• More info on interrupt priority

• Non-Maskable Interrupts

11

Interrupts on Linux

• Can look in /proc/interrupts

• Latency matters. Old days had problems where you’d

lose serial interrupts (small FIFOs) if your disk drive took

too long, etc.

• Cannot do anything that might block in an interrupt.

Can you do I/O? Can you do a printk? (re-entrancy)

• Top Half / Bottom Half

Have interrupt routine be bare minimum short. ACK

12

interrupt, handle super pressing thing (copy data out of

FIFO) Then tell the kernel to handle the rest later.

So you might have a tasklet/kernel thread that runs

occasionally (and is fully interruptible) that will do the

rest.

For example, network packet comes in, important to read

the packet and ACK interrupt. Put it in queue, then later

the code that does longer latency stuff (decodes packet,

does ethernet or TCP/IP stuff, then finally copies the

data to the code waiting)

13

User / Kernel Separation

• Why use userspace (why not all in kernel like DOS?)

Provides stability/protection/security

Can be slower to access hardware, but more protection

from crashing

• Can’t access all of CPSR register

Can’t turn off interrupts (why?)

Can’t switch to privileged modes via CPSR writes

• If virtual memory enabled, can’t access protected/kernel

memory

14

• Can you still access MMIO?

15

Entering User Mode

Generally done once at boot
mov r0 , #0x10 // set up user bits for CPSR

msr SPSR , r0 // put in the saved status register

ldr lr , =first // point link register to entry point of our user code

movs pc , lr // switch modes

16

System Calls

• If we are running in user mode, how can we get back

into the kernel?

• Interrupts!

◦ Timer interrupt is often used to periodically switch to

the kernel and it can then do any accumulated tasks.

• System calls! (software interrupt)

◦ How can we manually call into the kernel when we

need to?

17

ARM32 System Calls

• On ARM a SWI instruction (sometimes is shown as a

SVC instruction) causes a software interrupt.

• This calls into the kernel SWI Interrupt handler (which

we will have to set up)

• Based on the state of the registers at the time of the

SWI, the kernel will do something useful.

18

Debugging Linux System Calls

• Can watch system calls with strace command on Linux

19

Linux ARM32 System Call Interface

• EABI: Arguments in r0 through r6. System call number

in r7.

swi 0

Return value in r0

• OABI: Arguments in r0 through r6.

swi SYSBASE+SYSCALLNUM

Why bad? No way to get swi value except parsing back

in instruction stream.

20

SWI Interrupt Handler
uint32_t __attribute__ ((interrupt("SVC"))) swi_handler(

uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3) {

register long r7 asm ("r7");

printk("Syscall␣%d\n",r7);

/* Copy result into place of r0 on return stack */

asm volatile("str␣%[result],[sp ,#0]\n"

: /* output */

: [result] "r" (result) /* input */

:); /* clobber */

return result;

}

21

Linux System Call Results

• Result is a single value (plus contents of structures

pointed to)

• How can you indicate error?

• On Linux, values between -4096 and -1 are treated as

errors. Usually -1 is returned and the negative value is

made positive and stuck in errno.

• What are the limitations of this? (what if -4000 is a

valid return?)

22

syscalls on non-ARM systems

• It’s up to the OS and architecture

• x86 it’s int 0x80 on 32-bit and syscall on 64-bit

• Some OSes pass parameters on stack, Linux it’s usually

in registers for speed.

23

Advanced Syscall methods

• Linux: vsyscalls, vdso, io uring

• We’ll discuss these later

24

Calling a Syscall from Userspace

Generally the C library does this and hides the assembly

from you.
static inline uint32_t syscall3(int arg0 , int arg1 , int arg2 , int which) {

uint32_t result;

asm volatile ("mov␣r0 ,␣%[arg0]\n"

"mov␣r1,␣%[arg1]\n"

"mov␣r2,␣%[arg2]\n"

"mov␣r7,␣%[which]\n"

"swi␣0\n"

"mov␣%[result],␣r0\n"

: [result] "=r" (result)

: [arg0] "r" (arg0),

[arg1] "r" (arg1),

[arg2] "r" (arg2),

[which] "r" (which)

: "r0", "r1", "r2", "r7");

25

return result;

}

26

