
ECE 531 – Advanced Operating
Systems

Lecture 13

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 October 2025

Announcements

• Homework #4 was posted. Due Monday (since I got it

posted late)

◦ I updated the assignment slightly on Tuesday to clarify

and add some helper code for the command parsing

part of things.

1

HW#3 Review – Code

• Be sure you comment your code!

• Serial port: most got value right

Remember you can’t use floating point in kernel

• printk for hex

◦ Decimal algorithm is /10, digit remainder plus ’0’

◦ Ex can just /16 (which is a shift by 4) and two

case: 0-9 same as before, but A-F you have to handle

separately

◦ Should digits be uppercase?

2

technically upper vs lowercase %X vs %x

◦ Be careful shifting, what if print 0xfffffff? What if you

shift right but it’s signed? Also be careful shifting right

by 32, might be undefined behavior in C compiler

• Be sure print hardware info (r1)

3

HW#3 Review – Questions

• Why serial port?

Simplicity in code involved

Note while in theory the hardware is simple too (just 3

wires) in practice just plugging in USB or HDMI is a lot

easier than finding the right serial cable or hooking up

USB-serial

• What is parity? Why is it disabled?

Faster (one fewer bit per byte), much bigger

infrastructure to handle, not even that great (only detect

4

one bit flip). Not that critical for text. What would a

file transfer do? (checksum?)

Some systems might not support? True, but why don’t

they support it?

• inline asm lets you write code that’s not possible in C.

Also lets you bypass compiler (if you think you can do

better)

Don’t confuse it with the volatile keyword.

• Why no strtok()?

strtok() given a string and set of delimiters (like space,

tab) split up a line. So “led on” you’d get led, then run

5

it again and get “on”

• People seem to mostly have usb-serial going OK

6

Blocking vs Non-blocking Syscall

• Blocking system calls – program stops, waits for reply

before it can continue

• Nonblocking – system call returns right away, although

the result might just be “no data available” and you

have to check (callback or data structure) to find return

value later

7

Implementing Blocking System Calls

• What happens if I/O can take a large amount of time?

• Should we just block whole kernel until hardware ready

(maybe for seconds?)

• Ideally you can launch I/O and have HW send interrupt

when done

• What happens to process in this case?

• Usually set up data structure (queue) and put process

to sleep, and then OS moves to other things

• When I/O interrupt comes in, OS can wake up any

8

processes sleeping waiting for the data

9

Syscalls are Slow!

• Doing a user to kernel transition is slow

• Exceptions are slow on modern CPUs

• Linux is highly optimized but still slow

• Security (Meltdown) mitigations might slow things

further (need to flush TLB?)

• Are there alternatives?

10

Linux vsyscalls

• Some common Linux syscalls don’t really need any

action from the kernel, but just return a static

or easily calculated value (getpid(), get cpu(),

gettimeofday()

• Could we map some kernel memory into userspace to let

the user access it without a syscall?

• vsyscalls do this. At fixed address, you can jump there

and some code is in place to get the data without

entering kernel

11

• stub call to get values in 0xffffffffff600400

• Security issue: as with ASLR, code in fixed place could

be used by attacker

• Security issue: known location of syscall instruction

• Deprecated in Linux 3.1, use VDSO instead

12

Vsyscall Example
int vsyscall_getcpu(int *cpu , int *node) {

register int64_t rax __asm__("rax") = 0xffffffffff600800;

register void *rdi __asm__("rdi") = cpu;

register void *rsi __asm__("rsi") = node;

__asm__ volatile (

"callq␣*%%rax␣\n\t"

: "+r" (rax)

: "r" (rdi), "r" (rsi)

);

return rax;

}

13

Linux Virtual Dynamic Shared Object
(VDSO)

• New way of doing things is VDSO

• Similar to vsyscall, but appears as virtual shared library

that can be moved around in memory

• Can run “ldd /bin/ls” and you’ll see the vdso mapped

on modern Linux executables

• Same functions as well as gettime()

• Also some other things: has stub for calling syscalls so

on 32-bit x86 could use it to automatically call int 0x80

14

vs SYSCALL when avail

15

Sample VDSO Code
void *vdso;

vdso = dlopen("linux -vdso.so.1", RTLD_LAZY|RTLD_LOCAL|RTLD_NOLOAD);

if (!vdso) {

vdso = dlopen("linux -gate.so.1", RTLD_LAZY|RTLD_LOCAL|RTLD_NOLOAD);

vdso_gtod = (gtod_t)dlsym(vdso , "__vdso_gettimeofday");

}

vdso_gtod (&ours ,NULL);

printf("gettimeofday:␣%ld␣%ld\n",ours.tv_sec ,ours.tv_usec);

16

Asynchronous I/O

• What if want to launch a bunch of system calls and

you’re not particular in what order they run

• It’s possible to do this with the standard interface but

complicated

• Wouldn’t it be great if you could also launch a bunch all

at once without a slow syscall for each one?

17

Linux io uring

• input/output user ring-buffer

• This is recent, Linux 5.1 (2019)

• Most useful for asynchronous I/O

• Can set up two circular queues

◦ Submission Queue (SQ)

◦ Completion Queue (CQ)

• Use syscalls to set this up, with head and tail pointers

• Add info for a syscall-like request to submission queue,

update tail pointer

18

• Kernel checks and sees there’s a request and handles it

• When kernel is done it updates head/tail pointers and

puts results in completion queue

• This allows kernel communication without constant

syscalls

19

Linux io uring Setup

• Use mmap() to allocate SQ/CQ buffers

• Use io uring setup() also

• There’s a list of supported syscalls (see manpage). Put

something like IORING OP WRITE in SQ

• Syscall to get things running

20

Linux io uring Completion

• Monitor CQ for results

• Can finish out of order

• If you require things to be ordered you can set that up

• Can also configure free-running mode where kernel

thread constantly watches SQ for more syscalls to end

w/o syscall overhead

21

Linux io uring Sample Code

TODO

22

Linux io uring security issues

• Under current development, some security issues

• Google said 60% of their reported security bugs from

io uring (2023)

• For a while they turned off io uring on all products

• Maybe it has gotten better?

23

Userspace Executables

• Now that we can run code in userspace, what does that

look like?

24

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

• Can install “elfutils” and use something like “readelf -a

/bin/ls” to get info on what’s inside

25

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

26

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

27

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

28

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

29

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

30

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

DANGER: MELTDOWN

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

31

Address Space Layout Randomization
(ASLR)

• For security ASLR is enabled by default (you can disable)

• Each run of a program the location of text / data / bss

/ heap / stack might be moved around

• This in theory makes it harder for attackers to find

functions/data they want to use

• Makes performance analysis hard as execution ends

up being less deterministic (yes, some code behaves

differently depending on memory addresses)

32

