
ECE 531 – Advanced Operating
Systems

Lecture 14

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 October 2025



Announcements

• Homework #3 grades sent out

• Don’t forget Homework#4 due Monday

• Homework #5 will be posted

1



Static vs Dynamic Libraries

• Static: includes all code in one self-contained binary

◦ This includes all libraries, including C library

◦ Can make your executable 100x bigger

• Dynamic: library routines linked at load time

◦ Smaller binaries (less disk and RAM)

◦ Can share centralized versions of libraries

2



Static / Dynamic Tradeoffs

• Lots of debate about what is better

• Some people want Debian like where packages do not

include common libraries

• Alternative is macos/windows/flatpack style where

packages can include all libraries

• Benefits of static: no “DLL Hell” where you depend on

unavailable library

• Downside: lots more disk space

Also security, when a library has security bug need to

3



replace all apps rather than just update one central

library

4



How Executable Loading Works (Linux)

• For more info on how this all works on Linux I recommend

reading the following articles

• https://lwn.net/Articles/630727/ How programs

get run

• https://lwn.net/Articles/631631/ How programs

get run: ELF binaries

• And maybe https://lwn.net/Articles/604515/

Anatomy of a system call, part 2

5



Linux – Getting to Processes

• Kernel Boots

• init (process 1) started, switch to userspace

• init calls fork()

creates a child that is exact copy of init

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

Possibly not ELF. Shell scripts (Linux can also have

custom file loaders for things like java, cross-arch via

qemu, etc.)

6



• Loader loads it.

• Program runs until complete (exit/return)

• Parent waits for child to finish and once parent notified,

process can be freed

• Usually init starts up login and then a shell, or,

alternately, the GUI interface. These are all started

with fork/exec though with the original parent being

init.

7



Linux Process Management – fork

• fork() used to create exact copy of program

• pid=fork()

• If pid is a number, we are in parent and it’s the child’s

process ID (pid)

• If pid is zero, it means we are the child

• If trying to launch a new program we will immediately

call exec() if pid is 0

8



Linux Process Management – notes on fork

• Why split up process creation like this? In theory it lets

user code do some setup of the new process before exec,

otherwise the kernel does it all and the call to exec ends

up having huge numbers of parameters

• Not all of the state is copied over on fork() but it’s

complicated what is and isn’t

• On systems with virtual memory often no copying

happens at all, rather read-only COW mappings are

set up

9



Linux Process Management – exec()

• exec() replaces currently running process with a new

one from disk

• This also involves shutting down a lot of stuff that was

part of the old executable

• On Linux lots of variants: execl, execlp, execle, execv,

execve, execvp, execvpe

• Note: Linux kernel only implements execve() and

exevceat() the rest are made by C library

• l/v: l means command line arguments passed one by

10



one, where v they are passed as a single pointer to a

vector

• e: e means include a pointer to environment variables

• p: p means search the PATH for the executable

11



Linux Process Management – exiting

• Some process control of children gets a bit morbid

• Processes can exit with exit() or exit group()

• They can also return at the end of main() which will

also call exit

• You can also run kill(pid) to force it to exit from

another process

• Processes can also exit if some sort of error/crash

happens

12



Linux Process Management – wait()

• Parents are supposed to wait()/waitpid() for their

children to finish

• wait() will tell you the exit status of the child

• If a parent doesn’t wait, a child can become a “zombie”

(it is dead but it can’t go away because its parent is

ignoring it)

• If a parent exits before a child process, the child becomes

an “orphan” and generally init (process 1) will inherit all

the orphan processes

13



Processes (from the kernel side)

• We have so far been looking at processors from the

userspace interface

• What do things look like to the kernel?

• What is a process?

◦ It is the program running in memory

◦ It’s also all the state the kernel has to store in addition

to keep it running

14



Kernel Process State

• Hardware state (for context switch)

◦ registers (r0-r14), PC, status register

◦ Floating Point / Vector? Performance Counters?

• Software/OS State

◦ pid (process id), uid (user id)

◦ Memory ranges, stack location, page tables

◦ Process accounting / time stats

◦ Open files (all open files, file offsets, etc)

15



Process Control Block

• The structure that holds all the info on a kernel process

is sometimes called the Process Control Block (PCB)

• All of the processes in the system are usually kept

together in some sort of data structure (often an array

or linked list)

16



Internally How do you Make a Process

create process() or similar (used by fork()

• Allocate memory for a new process structure

• Initialize it

• Assign a process ID

• Insert into current process array or linked list

• Allocate a stack

• Initialize the registers

• If called by fork() copy over the info from parent

(including stack contents?)

17



Loading an Executable

load process() or similar (used by exec()

• Clear out any previous program state (if coming from

fork)

• Load executable from disk

• Parse the executable headers

• Allocate memory for machine code and data

• Allocate/zero the BSS memory

• Set up the saved program counter to point to entry point

18



Freeing a Process

delete process() or similar

• Used by exit() / exit group()

• Close all open files

• Free all memory

• Possibly let parent know and wait until acknowledged

• Pass exit/return value back to parent

• Remove process from list

19



Kernel Process Creation

• Involves assembly language trickery

• Kernel can create threads

◦ idle thread, pid 0, often does nothing (might halt/wfi

to enter sleep mode when nothing else running)

◦ Linux has a bunch of kernel worker threads it creates

to help out with things, that look like processes but

are parts of the kernel

• Kernel also does a bit of extra work to get init going

because it has to be started in kernel space before

20



switching to user space

21



Kernel Process Creation

• First set up user registers. How do you do this from

kernel/supervisor mode? Tricky, ARM created a special

“system” mode (user+permissions) to make this easier.

• Set up stack

• Set the SPSR and link register to act as if we were

returning from an exception, but with the return address

the start of our user program.

• Return

22



How Dynamic Linking Works

• ELF executable can have interp section, which says to

load /lib/ld-linux.so first

• This loads things up, then initialized dynamic libraries.

• Links things in place, updates function pointers and

shared variables, offset tables, etc.

• Lazy-Linking is possible. Function calls just call to a

stub that calls into linker. Only resolves the link if you

actually use it. Why is this a benefit (faster startup, not

load things not need). Does add indirection every time

23



you call.

• Can use ldd /bin/ls to see what dynamic libraries a

program is using

24



More info on Loader

• TODO: more info on this

• /lib/ld-linux.so.2

• Can launch dynamic libs on this

• Also gcc -static compiled. Possibly because it includes

dynlib() (name resolver?)

• Hand-assembled assembly calling only syscalls will not

load with this

25


