ECE 531 — Advanced Operating

Systems
Lecture 15

Vince Weaver
https://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

6 October 2025

https://www.eece.maine.edu/~vweaver

Announcements

e Note: Midterm after Fall break, on 20th
e Homework #5 will be Posted

HW+#5 — Userspace / Syscalls

e |In this homework we will move our shell to userspace

e This will involve switching to user mode as well as
Implementing system calls

e All calls in the shell to internal kernel routines must
be converted to userspace routines, such as printk() to
printf() and uart_putc() to putchar()

HW#5 — Switching to Userspace

e Need to setup user stack (can do this by switching to
special system mode, which is like user but privileged)
e Need to set saved SPSR register to have usermode
indicated

e Need to set return link register (LR) value to point to
our shell() function

e [hen we just return which starts the shell in usermode

HW#5 — Syscalls

e All I/O from usermode must be done through syscalls

e | provide a syscall handler that does a few common ones

e You will add the time () syscall that we will use to report
seconds since boot

e Will need to modify timer interrupt handler to track time

e In our shell need to call this. In real life libc (C library)
provides syscall wrappers using inline assembly. We
don’t have that yet so for now will call with something

| I ke syscalll (SYSCALL_TIME, (long)&time) ;

-y 4

HW=+#5 Shell Notes

e Review C string handling, strcmp/strncmp and
strcpy /strncpy /strlcpy

e Be careful with the sizeof() operator, note to
get length of string use strlen() not sizeof ().
sizeof (char[128]) will be 128 sizeof (char *) will
be 4, possibly neither is what you want if you are
measuring a NUL terminated string.

e In this class we haven't talked much about software
engineering best practices

-y 5

o Unit tests for printf/printk. Test outside of our OS
by making it standalone unit tests (avoid SD card
swapping)

o Code commenting.

o Source code versioning (git).

Multi-tasking / Multi-programming

e You could design a computer to only run one thing at a
time
e Much more convenient if you can run multiple programs
o If one program stops to wait for 1/O, another can run
o You can have multiple tasks going, but given the
illusion they are all running at once
o Especially useful when only have one core to run on

Timer Interrupt

e Usually a timer interrupt is set up to trigger every so
often

e 250Hz on Linux

e If more than one process wants to run, the old one
Is stopped and its context iIs saved, and a new one is
brought in to replace it

Context switching

e First time you get it working you get excited about

having an AAA program and BBB programing printing
ABABABA

How is Context Switching Implemented?

e Interrupt comes in
e Scheduler (more on that later) decides if it's time to
switch to another program

/Y 10

Context Switch — Save Current Program
State

e TODO: diagram of Process Control Block

e Userspace registers saved to process control block
Note this is tricky as we're running in kernel/interrupt
mode

e Need to save current PC of program

e Also save SPSR (flags)

e Stats (like time running) can be updated

e There's generally no need on modern systems to copy

-y 1

any memory around

Context Switch — Restore New Program
State

e Copy all register state from the new process process
control block into user registers (this includes stack
pointer as well as the return address to where the code
was stopped)

e Also restore SPSR status register (with flags)

e On virtual memory systems update pointer to virtual
memory page tables

e Return from timer interrupt and instead of returning to

-y 13

original we end up In the new one

14

Hardware vs Software Context Switching

e Some processors (like x86) can do context switching in
hardware

e You have special pointer to process control block

e Originally it was faster, but doesn’t handle a lot of odd
cases. Linux moved away from using it.

e It makes x86 OS code more complex though because
there are some features that depend on some of the
infrastructure

e TODO: look up more on this, things like TSS, LDT,

-y 15

descriptors, ioperm, etc

16

Context Switch Code

int32_t process_switch(struct process_control_block_type *o0ld,
struct process_control_block_type *new) {

/* Save current state to PCB x/
asm("mov,Luur2,uhlsave]l\n"

"stmia r2,{r0-1r}\n" // Save all registers rO-1lr
"add,Luur2,r2,#60\n"

"mrs,,Luur0, SPSR\n" // load user SPSR

"stmia_ r2,{r0}F\n" // save SPSR to PCB

/* output */
[save] "r"(&(old->kernel_state.r[0]))/* input x/
/* clobbers */

)

current_process=new;

/* Restore current state from PCB */
asm("mov,uur2,u%lrestore]l\n"
"ldr,,LuurO, [r2,#60]\n"
e L S S T O T // restore SPSR (switch to user mode)
"ldmia,r2,{r0-r14}\n" // restore registers

17

"movyuupc,lr\n" // return, restoring SPSR
/* output */ //
[restore] "r"(&(new->kernel_state.r[0]))

/* input */
/* clobbers x/

The Scheduler

e If you have multiple processes ready to run, how do you
pick which to run next?

e [he code that does this is called the scheduler

e This is a complex problem

e You want to run as fast as possible as it runs on every
timer tick

/Y 19

When to Schedule

e If timeslice runs out

e Task voluntarily yields (it has run out of work to do)

e If kernel blocks on 1/O (Can be but to sleep instead of
busy waiting)

-y 20

Can you Multi-task without timer tick?

e Co-operative multi-tasking

e Really old MacOS and Windows

e Processes voluntarily yield every so often

e Can this go wrong? What if process doesn't want to
give up?

/Y 21

Scheduling Goals

e All: fairness, balance

e Batch: throughput (max jobs/hour), turnaround (time
from submission to completion), CPU utilization (want
it busy)

e Interactive: fast response, doesn’'t annoy users

e Real-time: meet deadlines, determinism

-y 22

Batch Scheduling

e First-come-first-served (what if 2-day long job submitted
first)

e Shortest job first

e Many others

-y 23

Interactive Scheduling

e Round-robin

e Priority — “nice” on UNIX

e Multiple Queues

e Others (shortest process, guaranteed, lottery)

e Fair scheduling — per user rather than per process

24

Real-time Scheduling

e Complex, more examples in 471 or real time OS course

-y 25

Scheduler example

e Simple: In order the jobs arrive
e Static: (RMS) Rate Monotonic Scheduling — shortest
first
e Dynamic: (EDF) Earliest deadline first
e [hree tasks come In
o A: deadline: finish by 10s, takes 4s to run
o B: deadline: finish by 3s, takes 2s to run
o C: deadline: finish by bs, takes 1s to run
e Can they meet the deadline?

-y 26

e There is a large body of work on scheduling algorithms.

In-order | A A A|A B|B C - - -
RMS C B B/AAA A - - -
EDF B B C/lA A/A A - - -

-y .

Priority Based Scheduling

e It's actually rare for an OS to let you specify a deadline
e Usually instead they are priority based

o Have multiple tasks running, assign priority

o In previous example, B highest, then C, then A

o B can pre-empt C and A
e What can happen if overcommit resources? Starvation

/Y 28

IRQ

HIGH

MEDIUM

LOW

OS

29

Priority Inversion Example

e Task priority 3 takes lock on some piece of hardware
(camera for picture)

e Task 2 fires up and pre-empts task 3

e Task 1 fires up and pre-empts task 1, but it needs same
HW as task 3. Waits for it. It will never get free.
(camera for navigation?)

e Space probes have had issues due to this.

/Y 30

Linux Real Time Priorities

e Linux Nice: -20 to 19 (lowest), use nice command
e Real Time: 0 to 99 (highest)

e Appears in ps as 0 to 1397

e Can set with chrt command

31

Scheduling Queues

e generally there will be a queue data structure holding all
processes ready to run

e [here will also be wait queues, where programs waiting
on 1/O can sleep
o If 1/O comes in, the kernel will wake the process

by moving it to the ready-to-run queue so it can be
scheduled

-y 32

Process States

e Running — on CPU
e Ready — ready but no CPU available
e Blocked — waiting on |/O or resource

e Terminated — might stick around until parent
acknowledges

/Y a3

Scheduler Inputs

How do you schedule?

Per-task (5 jobs, each get 20%).

Per user? (5 users, each get 20%).

Per-process? Per-thread?

Multi-processors? Hyper-threading? Heterogeneous
cores’?

e Power / Thermal issues? Performance counters?

-y 34

