
ECE 531 – Advanced Operating
Systems

Lecture 16

Vince Weaver

https://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 October 2025

https://www.eece.maine.edu/~vweaver


Announcements

• Note: Midterm after Fall break, on 20th

• Homework #5 was Posted

• Final Project description posted to website, more on that

later

1



Scheduler Inputs

• How do you decide what to schedule?

• We mentioned you can just have queue with jobs ready

to run

How do you pick?

• Round-robin? Random?

2



Fair Scheduling – Per User

• Evenly split between ready tasks: Per-task (5 jobs, each

get 20%)

• What if one user created 96 jobs, 4 others 1 each?

One user would get 96% of CPU and others 1%

• Fair scheduling would make it so still each user got fair

share

(5 users, each get 20%).

3



Hardware Concerns

• What if multiple CPUs/Cores? How should they be

assigned?

• What if 4 cores, 4 programs, just one each

What if 5 programs? One is going to have to be swapped

in/out, do you swap same core, do you spread the pain

across all cores?

• Thread affinity

◦ Ideally program stay on same core as much as possible

◦ Things like Caches, Branch Predictors, other program

4



state build up on core and lost if a thread “migrates”

to another core

◦ NUMA issues too. Different cores closer to different

parts of DRAM. If you migrate then RAM latency can

go up unless you migrate RAM too

• IPC (inter-process communication)

◦ If two threads communicating / working together you

probably want them to both be active at the same

time so they can work together

◦ If not scheduled at same time adds latency to

communications

5



• Thermal Issues

◦ Modern cores can “turbo boost” if low thermal load

◦ This works best if cores being used far apart so the

heat is spread more evenly across processor

◦ Scheduler needs to be aware of this

• Low Power

◦ If have multiple CPUs can maybe power one down if

idle

◦ If you can move processes all to one CPU then you

can shut down the others

• Hyperthreading / SMT

6



◦ Some processors have “hardware multithreading”

where it looks like there are two cores but really it’s not,

it’s reusing pipeline stages to allow multiple threads on

one core

◦ Often running two threads can be slower than just

running one thread on the core

◦ When scheduling, want to assign tasks to the

hyperthread as last resort

• Heterogeneous CPUs

◦ big/LITTLE, intel Power/Efficiency

◦ how to decide which jobs run on power cores, which

7



on efficiency

8



The Linux Scheduler – Challenges

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

9



The Linux Scheduler – Challenges

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (CFS) (with

lots of drama). Is O(log N). Implementation of

“weighted fair queuing”

• Would you want a O(N 3) scheduler?

10



Linux Scheduler – Problems

• “The Linux Scheduler: A Decade of Wasted Cores” from

Eurosys 2016 conference

• TODO: summarize points from it

11



Linux Scheduler – EEVDF Scheduler

• Earliest Virtual Deadline First Scheduler

• https://lwn.net/Articles/969062/

• New scheduler, merged in Linux 6.6

• TODO: more notes on this

12

https://lwn.net/Articles/969062/


Single-Thread Processes

• A process is a program running on a computer, usually

being managed by an operating system

• Process has one view of memory, one program counter,

one set of registers, one stack

13



Could you build a multi-cpu program using
just Processes?

• Yes. Start or fork() many copies, and have them

communicate via message passing (this is more like

a distributed system)

• Use Inter-Process Communication (IPC) Linux has many,

all have tradeoffs

◦ Sockets (UNIX domain, net)

◦ Anonymous memory (mmap)

◦ Files (on disk or mmaped)

14



◦ Signals

◦ Pipes (Anonymous, Named, FIFOs)

◦ Shared Memory (SysV, POSIX)

◦ Message Queues (SysV, POSIX)

◦ Semaphores (SysV, POSIX)

◦ Futex locks

◦ Inotify

◦ FUSE

◦ D-Bus

◦ others?

15



Threads

• Can an address space have multiple threads of control

running in it at once?

• Examples when this might be useful:

◦ GUI: interface thread and worker thread?

◦ Game: music thread, AI thread, display thread?

◦ Webserver: can handle incoming connections then pass

serving to worker threads

16



Multithreading Implementation

• The memory layout is shared by all threads in a process

• Each thread has its own PC

• Each thread has its own stack

• Each thread has its own copy of the register file

• Each thread has its own “thread local storage” (TLS)

area for private variables

17



Multithreading Tradeoffs

• Benefits

◦ shared variables, faster communication

◦ If program blocks on I/O, rest of threads can keep

going

◦ programs can run faster on multiprocessor systems

• Complications

◦ Resource conflicts: (what if multiple threads try to

scanf() at same time?)

◦ What if a thread closes a file while another is trying

18



to read?

◦ On a fork, does the child process have the same threads

or not?

19



Thread Implementations

• Cause of many flamewars over the years

20



User-Level Threads (N:1 one process many
threads)

• Benefits

◦ Kernel knows nothing about them. Can be

implemented even if kernel has no support.

◦ Each process has a thread table

◦ When it sees it will block, it switches threads/PC in

user space

◦ Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

21



kernel context switch)

◦ Can have own custom scheduling algorithm

◦ Scale better, do not cause kernel structures to grow

• Downsides

◦ How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

◦ Co-operative, threads won’t stop unless voluntarily

give up.

Can request periodic signal, but too high a rate is

inefficient.

22



Kernel-Level Threads (1:1 process to
thread)

• Benefits

◦ Kernel tracks all threads in system

◦ Handle blocking better

• Downsides

◦ Thread control functions are syscalls

◦ When yielding, might yield to another process rather

than a thread

◦ Might be slower

23



Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

24



Common Thread Programming Models

• Pipeline – task broken into a set of subtasks that each

execute serial on own thread

• Manager/worker – a manager thread assigns work to a

set of worker threads. Also manager usually handles I/O

static worker pool – constant number of threads dynamic

worker pool – threads started and stopped as needed

• Peer – like manager/worker but the manager also does

calculations

25



Shared Memory Model

• All threads have access to shared memory

• Threads also have private data

• Programmers must properly protect shared data

26



Thread Safety

• Is a function called thread safe?

• Can the code be executed multiple times simultaneously?

• The main problem is if there is global state that must be

remembered between calls. For example, the strtok()

function.

• As long as functions only use local variables (on stack,

not static or global) usually not an issue.

• Some issues can be addressed with locking.

27



POSIX Threads (pthreads)

• Standardized thread interface

• Standard cross-platform set of routines to use

28



Other types of Threads

• co-routines

◦ Not found in C

◦ Sort of like co-operatively scheduled software threads

◦ functions can be suspended at various points and re-

started later

◦ Less issues than full threads as only one can run at a

time, simplifying locking

• C11/C17 threads

◦ https://beej.us/guide/bgc/html/split/multithreading.

29

https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html


html

◦ Sort of last-minute addition to C

◦ No real benefits over using pthreads?

• Fibers?

• Green Threads

30

https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html


Linux Threading – Historical

• Linux original thread implementation was horrible

software based

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads (no longer used) – use clone syscall,

SIGUSR1 SIGUSR2 for communicating.

Could not implement full POSIX threads, especially with

signals. Hard thread-local storage

Needed extra helper thread to handle signals

31



Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processes, not clear they are subthreads

32



Linux Threading – NPTL

• NPTL – Native POSIX Thread Library

• Kernel threads

• Clone syscall, new futex system calls.

• Developed around 2003 or so by Drepper and Molnar at

RedHat, Kernel 2.6

• Why kernel? Linux has very fast context switch

compared to some OSes.

• Need new C library/ABI to handle location of thread-

local storage

33



On x86 the fs/gs segment used. Others need spare

register.

• Signal handling in kernel

• Clone handles setting TID (thread ID)

• exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

34



Brief Linux Pthread Programming Notes

• Pass -pthread to gcc

• pthread create(function) – start new thread of

execution, launching with function

• pthread exit() – exit thread

• pthread join() – wait until thread finishes

• lots and lots more

35


