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Announcements

• Note: Midterm after Fall break, on 20th

• Homework #5 was Posted

• Final Project description posted to website, more on that

later
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Scheduler Inputs

• How do you decide what to schedule?

• We mentioned you can just have queue with jobs ready

to run

How do you pick?

• Round-robin? Random?
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Fair Scheduling – Per User

• Evenly split between ready tasks: Per-task (5 jobs, each

get 20%)

• What if one user created 96 jobs, 4 others 1 each?

One user would get 96% of CPU and others 1%

• Fair scheduling would make it so still each user got fair

share

(5 users, each get 20%).
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Hardware Concerns

• What if multiple CPUs/Cores? How should they be

assigned?

• What if 4 cores, 4 programs, just one each

What if 5 programs? One is going to have to be swapped

in/out, do you swap same core, do you spread the pain

across all cores?

• Thread affinity

◦ Ideally program stay on same core as much as possible

◦ Things like Caches, Branch Predictors, other program
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state build up on core and lost if a thread “migrates”

to another core

◦ NUMA issues too. Different cores closer to different

parts of DRAM. If you migrate then RAM latency can

go up unless you migrate RAM too

• IPC (inter-process communication)

◦ If two threads communicating / working together you

probably want them to both be active at the same

time so they can work together

◦ If not scheduled at same time adds latency to

communications
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• Thermal Issues

◦ Modern cores can “turbo boost” if low thermal load

◦ This works best if cores being used far apart so the

heat is spread more evenly across processor

◦ Scheduler needs to be aware of this

• Low Power

◦ If have multiple CPUs can maybe power one down if

idle

◦ If you can move processes all to one CPU then you

can shut down the others

• Hyperthreading / SMT
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◦ Some processors have “hardware multithreading”

where it looks like there are two cores but really it’s not,

it’s reusing pipeline stages to allow multiple threads on

one core

◦ Often running two threads can be slower than just

running one thread on the core

◦ When scheduling, want to assign tasks to the

hyperthread as last resort

• Heterogeneous CPUs

◦ big/LITTLE, intel Power/Efficiency

◦ how to decide which jobs run on power cores, which
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on efficiency
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The Linux Scheduler – Challenges

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency
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The Linux Scheduler – Challenges

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (CFS) (with

lots of drama). Is O(log N). Implementation of

“weighted fair queuing”

• Would you want a O(N 3) scheduler?
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Linux Scheduler – Problems

• “The Linux Scheduler: A Decade of Wasted Cores” from

Eurosys 2016 conference

• TODO: summarize points from it
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Linux Scheduler – EEVDF Scheduler

• Earliest Virtual Deadline First Scheduler

• https://lwn.net/Articles/969062/

• New scheduler, merged in Linux 6.6

• TODO: more notes on this
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Single-Thread Processes

• A process is a program running on a computer, usually

being managed by an operating system

• Process has one view of memory, one program counter,

one set of registers, one stack
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Could you build a multi-cpu program using
just Processes?

• Yes. Start or fork() many copies, and have them

communicate via message passing (this is more like

a distributed system)

• Use Inter-Process Communication (IPC) Linux has many,

all have tradeoffs

◦ Sockets (UNIX domain, net)

◦ Anonymous memory (mmap)

◦ Files (on disk or mmaped)
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◦ Signals

◦ Pipes (Anonymous, Named, FIFOs)

◦ Shared Memory (SysV, POSIX)

◦ Message Queues (SysV, POSIX)

◦ Semaphores (SysV, POSIX)

◦ Futex locks

◦ Inotify

◦ FUSE

◦ D-Bus

◦ others?
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Threads

• Can an address space have multiple threads of control

running in it at once?

• Examples when this might be useful:

◦ GUI: interface thread and worker thread?

◦ Game: music thread, AI thread, display thread?

◦ Webserver: can handle incoming connections then pass

serving to worker threads

16



Multithreading Implementation

• The memory layout is shared by all threads in a process

• Each thread has its own PC

• Each thread has its own stack

• Each thread has its own copy of the register file

• Each thread has its own “thread local storage” (TLS)

area for private variables
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Multithreading Tradeoffs

• Benefits

◦ shared variables, faster communication

◦ If program blocks on I/O, rest of threads can keep

going

◦ programs can run faster on multiprocessor systems

• Complications

◦ Resource conflicts: (what if multiple threads try to

scanf() at same time?)

◦ What if a thread closes a file while another is trying
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to read?

◦ On a fork, does the child process have the same threads

or not?
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Thread Implementations

• Cause of many flamewars over the years
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User-Level Threads (N:1 one process many
threads)

• Benefits

◦ Kernel knows nothing about them. Can be

implemented even if kernel has no support.

◦ Each process has a thread table

◦ When it sees it will block, it switches threads/PC in

user space

◦ Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow
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kernel context switch)

◦ Can have own custom scheduling algorithm

◦ Scale better, do not cause kernel structures to grow

• Downsides

◦ How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

◦ Co-operative, threads won’t stop unless voluntarily

give up.

Can request periodic signal, but too high a rate is

inefficient.
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Kernel-Level Threads (1:1 process to
thread)

• Benefits

◦ Kernel tracks all threads in system

◦ Handle blocking better

• Downsides

◦ Thread control functions are syscalls

◦ When yielding, might yield to another process rather

than a thread

◦ Might be slower
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Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.
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Common Thread Programming Models

• Pipeline – task broken into a set of subtasks that each

execute serial on own thread

• Manager/worker – a manager thread assigns work to a

set of worker threads. Also manager usually handles I/O

static worker pool – constant number of threads dynamic

worker pool – threads started and stopped as needed

• Peer – like manager/worker but the manager also does

calculations
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Shared Memory Model

• All threads have access to shared memory

• Threads also have private data

• Programmers must properly protect shared data

26



Thread Safety

• Is a function called thread safe?

• Can the code be executed multiple times simultaneously?

• The main problem is if there is global state that must be

remembered between calls. For example, the strtok()

function.

• As long as functions only use local variables (on stack,

not static or global) usually not an issue.

• Some issues can be addressed with locking.
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POSIX Threads (pthreads)

• Standardized thread interface

• Standard cross-platform set of routines to use
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Other types of Threads

• co-routines

◦ Not found in C

◦ Sort of like co-operatively scheduled software threads

◦ functions can be suspended at various points and re-

started later

◦ Less issues than full threads as only one can run at a

time, simplifying locking

• C11/C17 threads

◦ https://beej.us/guide/bgc/html/split/multithreading.
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html

◦ Sort of last-minute addition to C

◦ No real benefits over using pthreads?

• Fibers?

• Green Threads
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Linux Threading – Historical

• Linux original thread implementation was horrible

software based

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads (no longer used) – use clone syscall,

SIGUSR1 SIGUSR2 for communicating.

Could not implement full POSIX threads, especially with

signals. Hard thread-local storage

Needed extra helper thread to handle signals
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Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processes, not clear they are subthreads
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Linux Threading – NPTL

• NPTL – Native POSIX Thread Library

• Kernel threads

• Clone syscall, new futex system calls.

• Developed around 2003 or so by Drepper and Molnar at

RedHat, Kernel 2.6

• Why kernel? Linux has very fast context switch

compared to some OSes.

• Need new C library/ABI to handle location of thread-

local storage
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On x86 the fs/gs segment used. Others need spare

register.

• Signal handling in kernel

• Clone handles setting TID (thread ID)

• exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc
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Brief Linux Pthread Programming Notes

• Pass -pthread to gcc

• pthread create(function) – start new thread of

execution, launching with function

• pthread exit() – exit thread

• pthread join() – wait until thread finishes

• lots and lots more
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