ECE 531 — Advanced Operating

Systems
Lecture 16

Vince Weaver
https://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

8 October 2025

https://www.eece.maine.edu/~vweaver

Announcements

e Note: Midterm after Fall break, on 20th

e Homework #b5 was Posted

e Final Project description posted to website, more on that
ater

Scheduler Inputs

e How do you decide what to schedule?

e \We mentioned you can just have queue with jobs ready
to run
How do you pick?

e Round-robin? Random?

Fair Scheduling — Per User

e Evenly split between ready tasks: Per-task (5 jobs, each
get 20%)

e What if one user created 96 jobs, 4 others 1 each?
One user would get 96% of CPU and others 1%

e Fair scheduling would make it so still each user got fair
share
(5 users, each get 20%).

Hardware Concerns

e What if multiple CPUs/Cores? How should they be
assigned?

e What if 4 cores, 4 programs, just one each
What if 5 programs? One is going to have to be swapped
in/out, do you swap same core, do you spread the pain
across all cores?

e Thread affinity
o ldeally program stay on same core as much as possible
o Things like Caches, Branch Predictors, other program

-y 4

state build up on core and lost if a thread “migrates”
to another core

o NUMA issues too. Different cores closer to different
parts of DRAM. If you migrate then RAM latency can
go up unless you migrate RAM too

e IPC (inter-process communication)

o If two threads communicating / working together you
probably want them to both be active at the same
time so they can work together

o If not scheduled at same time adds latency to
communications

-y 5

e [hermal Issues
o Modern cores can “turbo boost” if low thermal load
o This works best if cores being used far apart so the
heat Is spread more evenly across processor
o Scheduler needs to be aware of this
e Low Power
o If have multiple CPUs can maybe power one down if
idle
o If you can move processes all to one CPU then you
can shut down the others

e Hyperthreading / SMT

-y 6

o Some processors have “hardware multithreading”
where it looks like there are two cores but really it's not,
It's reusing pipeline stages to allow multiple threads on
one core

o Often running two threads can be slower than just
running one thread on the core

o When scheduling, want to assign tasks to the
hyperthread as last resort

e Heterogeneous CPUs
o big/LITTLE, intel Power/Efficiency

o how to decide which jobs run on power cores, which

-y 7

on efficiency

The Linux Scheduler — Challenges

e People often propose modifying the scheduler. That is
tricky.

e Scheduler picks which jobs to run when.

e Optimal scheduler hard. What makes sense for a long-
running HPC job doesn’t necessarily make sense for an
interactive GUI session. Also things like |/O (disk) get
involved.

e You don't want it to have high latency

The Linux Scheduler — Challenges

e Linux originally had a simple circular scheduler. Then
for 2.4 through 2.6 had an O(N) scheduler

e Then in 2.6 until 2.6.23 had an O(1) scheduler
(constant time, no many how many processes).

e Currently the “Completely Fair Scheduler” (CFS) (with
lots of drama). Is O(log N). Implementation of
“weighted fair queuing’

e Would you want a O(N?) scheduler?

/Y 10

Linux Scheduler — Problems

e “The Linux Scheduler: A Decade of Wasted Cores” from
Eurosys 2016 conference
e TODO: summarize points from it

/Y 11

Linux Scheduler — EEVDF Scheduler

e Earliest Virtual Deadline First Scheduler
e https://lwn.net/Articles/969062/
e New scheduler, merged in Linux 6.6

e TODO: more notes on this

12

https://lwn.net/Articles/969062/

Single-Thread Processes

e A process is a program running on a computer, usually
being managed by an operating system

e Process has one view of memory, one program counter,
one set of registers, one stack

/Y 13

Could you build a multi-cpu program using
just Processes?

e Yes. Start or fork() many copies, and have them
communicate via message passing (this is more like
a distributed system)

e Use Inter-Process Communication (IPC) Linux has many,
all have tradeoffs
o Sockets (UNIX domain, net)
o Anonymous memory (mmap)
o Files (on disk or mmaped)

-y 14

o Signals

o Pipes (Anonymous, Named, FIFOs)
o Shared Memory (SysV, POSIX)

o Message Queues (SysV, POSIX)

o Semaphores (SysV, POSIX)

o Futex locks

notify

-USE

D-Bus

o others?

O O O

15

Threads

e Can an address space have multiple threads of control
running in it at once?
e Examples when this might be useful:
o GUI: interface thread and worker thread?
o Game: music thread, Al thread, display thread?
o Webserver: can handle incoming connections then pass
serving to worker threads

/Y 16

Multithreading Implementation

e [he memory layout is shared by all threads in a process

e Eac
e Eac
e Eac
e Eac

Nt
Nt
Nt

nread
Nread

Nread

has its own PC
nas Its own stack

nas its own copy of the register file

n thread has its own “thread local storage” (TLS)
area for private variables

17

Multithreading Tradeoffs

e Benefits
o shared variables, faster communication
o If program blocks on 1/O, rest of threads can keep
going
o programs can run faster on multiprocessor systems
e Complications
o Resource conflicts: (what if multiple threads try to
scanf() at same time?)
o What if a thread closes a file while another is trying

-y 18

to read?
o On a fork, does the child process have the same threads
or not?

-y 19

Thread Implementations

e Cause of many flamewars over the years

20

User-Level Threads (N:1 one process many
threads)

e Benefits

o Kernel knows nothing about them. Can be
implemented even if kernel has no support.

o Each process has a thread table

o When it sees it will block, it switches threads/PC in
user space

o Different from processes? When thread_yield() called
it can switch without calling into the kernel (no slow

/Y 21

kernel context switch)

o Can have own custom scheduling algorithm

o Scale better, do not cause kernel structures to grow

e Downsides

o How to handle blocking? Can wrap things, but not
easy. Also can't wrap a pagefault.

o Co-operative, threads won't stop unless voluntarily
give up.
Can request periodic signal, but too high a rate is
inefficient.

/Y 22

Kernel-Level Threads (1:1 process to
thread)

e Benefits
o Kernel tracks all threads in system
o Handle blocking better
e Downsides
o Thread control functions are syscalls
o When vyielding, might yield to another process rather
than a thread
o Might be slower

-y 23

Hybrid (M:N)

e Can have kernel threads with user on top of it.
e Fast context switching, but can have odd problems like
priority inversion.

-y 24

Common Thread Programming Models

e Pipeline — task broken into a set of subtasks that each
execute serial on own thread

e Manager/worker — a manager thread assigns work to a
set of worker threads. Also manager usually handles |/O
static worker pool — constant number of threads dynamic
worker pool — threads started and stopped as needed

e Peer — like manager/worker but the manager also does
calculations

-y 25

Shared Memory Model

e All threads have access to shared memory

e [hreads also have private data

e Programmers must properly protect shared data

26

Thread Safety

e Is a function called thread safe?

e Can the code be executed multiple times simultaneously?

e The main problem is if there is global state that must be
remembered between calls. For example, the strtok()
function.

e As long as functions only use local variables (on stack,
not static or global) usually not an issue.

e Some issues can be addressed with locking.

-y 21

POSIX Threads (pthreads)

e Standardized thread interface
e Standard cross-platform set of routines to use

28

Other types of Threads

e co-routines
o Not found in C
o Sort of like co-operatively scheduled software threads

o functions can be suspended at various points and re-
started later
o Less issues than full threads as only one can run at a
time, simplifying locking
e C11/C17 threads
o https://beej.us/guide/bgc/html/split/multithr

VA A 4 29

https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html

html
o Sort of last-minute addition to C
o No real benefits over using pthreads?

e Fibers?
e Green Threads

30

https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html
https://beej.us/guide/bgc/html/split/multithreading.html

Linux Threading — Historical

e Linux original thread implementation was horrible
software based

e Originally used only userspace implementations. GNU
portable threads.

e LinuxThreads (no longer used) — use clone syscall,
SIGUSR1 SIGUSR2 for communicating.
Could not implement full POSIX threads, especially with
signals. Hard thread-local storage
Needed extra helper thread to handle signals

31

Problems, what happens if helper thread killed? Signals
oroken? 8192 thread limit? proc/top clutter up with
orocesses, not clear they are subthreads

-y 32

Linux Threading — NPTL

e NPTL — Native POSIX Thread Library

e Kernel threads

e Clone syscall, new futex system calls.

e Developed around 2003 or so by Drepper and Molnar at
RedHat, Kernel 2.6

e Why kernel? Linux has very fast context switch
compared to some OSes.

e Need new C library/ABI to handle location of thread-
local storage

-y 33

On x86 the fs/gs segment used. Others need spare
register.
e Signal handling in kerne
e Clone handles setting TID (thread ID)
e exit_group() syscall added that ends all threads in
process, exit() just ends thread.
exec() kills all threads before execing
Only main thread gets entry in proc

-y 34

Brief Linux Pthread Programming Notes

e Pass -pthread to gcc

e pthread_create(function) — start new thread of
execution, launching with function

e pthread_exit() — exit thread

e pthread_join() — wait until thread finishes

e lots and lots more

-y 35

