ECE 531 — Advanced Operating

Systems
Lecture 17

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

10 October 2025


https://web.eece.maine.edu/~vweaver

Announcements

e Midterm the 20th

e Don't forget fall break



HW#4 Review — Code

e Be sure your code compiles

e Note: timer running at 1IMHz which is 10e6 Hz, not
2e20 Hz.



HW#4 Review — Question 1

o FIQ vs IRQ difference?
e FIQ banks some registers, so is faster (no saving),

e higher priority
e only one so don't have to search for source



HW#4 Review — Question 2

e BASIC_PENDING bit 19 is interrupt 57 which is UART.

e This info is in the manual but you have to consult two
tables (confusing)

e First table (which) says it's GPU interrupt 57

e Second table says UART is interrupt 57



HW+#4 Review — Question 3

e How to change modes?
e Write to the mode field of CPSR register.



HW+#4 Review — Question 3

e Subtract 4 because it offsets by four when saving the PC

e Why? Historical reasons.

e Most likely original pipelined processor design it's just
what the PC happened to be when an IRQ happened
and it was easier to handle in software than hardware

e [hen they were stuck with this forever



Memory Management

e Until now we have used static memory location (hard-
coded at compile time)

e If we want to start running programs with fork/exec we
need to allocate memory for the new processes

e How does memory allocation work?



Various Types of Memory Management

e Application / Userspace

e Operating System



Application Memory Allocation on C/Linux

#include <stdio.h>

int global_x=5; /* data */
int global_y=0; /* bss x*/

int main(int argc, char x*x*xargv) {
int local_x=5; /* stack x*/
static int static_y=5; /* data */
static int static_x=0; /* bss */
char *heap_x=malloc (1024); /* heap or mmap() */

printf ("Hello_ world\n");

return O;



Compiler Optimization Note

e The compiler can (and will) optimize away memory
accesses whenever possible

e At -O2 optimization if you don't use a pointer to a
variable it might only ever live in a register

e The old register keyword used to enforce this

/Y 10



Static Allocation — Data Segment

e Global and static variables that are initialized go in the
data segment
e Loaded directly from the executable

/Y 11



Static Allocation — BSS Segment

e Global and static variables initialized to zero go in the
bss segment.

e Uninitialized global/static variables also go in BSS
On Linux at least these will be initialized to zero even if
you don't request it
You wouldn't want actually uninitialized data on process
start up, huge security risk.

e These aren’t in executable, it just holds the total BSS
size request, and the OS allocates and zeros it at start

/Y 12



Dynamic Allocation — Variables on the
Stack

e Local variables go on the stack
e Stack auto-grows down
e Note: stack often has strict alignment rules 47 167

/* arm32 x/
int q[1000];

sub sp, sp, #4000 @ 0xfal
R -

add sp, sp, #4000 @ O0xfal
bx 1r

/* arm64 x/
s (@) LT



adrp x0, 0 <__abi_tag-0x278>

sub sp, sp, #0xfal

movi v2.4s, #0x4

add x1, sp, #0xfaO

ldr ql, [x0, #2048]

mov x0, sp

mov v0.16b, v1.16D

add vl.4s, vl1.4s, v2.4s

mul v0.4s, v0.4s, v0.4s

str q0, [x0], #16 // qO0 =
cmp x1, xO

b.ne 7b8 <foo+0x18> // b.any
ldr w0, [sp, #60]

add sp, sp, #0xfal

ret

128 bit fp

14



Variables on the Stack — More

e Can you dynamically allocate on stack? alloca()
e Also variable defined arrays (gcc extension?)
int arrayly];
e Downsides/Issues
o stack overflow attacks (show example)
o What happens if you return a pointer to a local variable
o Contents of uninitialized variables might have old data,
be not zero

-y 15



Dynamic Memory Allocation — Heap

e malloc() is not a syscall, but a library call

e Generally the C library will request chunks of memory
from the OS, then hand it out in smaller pieces as
requested

/Y 16



The Heap

e ‘program break” Is the address just above the data
segment.

e can allocate/deallocate memory by moving this boundary

e Kernel interface is the brk() system call which moves
the end of the data segment (essentially making the
heap bigger)

e brk(address) moves new end of data segment to
address if possible

e sbrk(size) moves break area by size

-y 17



Dynamic Memory — mmap()

e Widely used modern method of getting memory to use

e mmap () initially mapped file into memory so can be
accessed with load/store memory accesses rather than
disk read/write

e You can specify ANONYMOUS access and it will back
with zeroed out memory instead, essentially letting you
allocate arbitrary sizes of memory

e In addition you can set extra constraints like READ
/ WRITE / EXEC to have it read only, read write,

-y 18



executable (shared libraries are loaded this way, map
memory, copy in as executable)

e Can mark as SHARED to share pages between processes
for inter-process communication (IPC)

e MAP_FIXED can be used to request it be loaded at a
specific address if possible

e MAP_LOCKED can request not be swapped out

/Y 19



How malloc() Works

e Many ways to write malloc(), each C library has own

e Basically a big chunk of RAM is grabbed from the OS,
and then split into parts in a custom way.

e Do you just grab a chunk of mem and return a pointer?
Or is there extra info you need to track?

e The biggest problem is fragmentation, which happens
when memory is freed in non-contiguous areas.

/Y 20



dimalloc — Doug Lea

e glibc uses ptmalloc based on dimalloc

e Memory allocated in chunks, with 8 or 16-byte header
e bins of same sized objects, doubly linked list

e Small allocations (256kB?) closest power of two used
e Larger, mmap used, multiple of page size.

-y 21



Manual vs Automatic

e With C you can manually allocate and free memory.
Prone to errors:
o Use-after-free errors
o Buffer overflows

o Memory Leaks
o ALL OF THE ABOVE CAN LEAD TO ROOT

EXPLOITS
e High-level languages such as Java will automatically
allocate memory for objects.

-y 22



o The user never sees memory pointers.

o Unused memory areas are periodically freed via
“garbage-collection™ .

o At the same time the memory can be compacted,
avoiding fragmentation.

o Problem?  Slow, not real-time, can be complex
detangling complex memory dependency chains.

-y 23



Pre-Fall-Break-Bonus

e "Pi-on-Fire” demo

e Runs on a Pi-1B on top of an OS based on the one from
class

e Won second place in the "modern demo’ compo at
Demosplash 2019

e Chiptune music by DYA

e http://www.deater.net/weave/vmwprod/pionfire/

-y 24


http://www.deater.net/weave/vmwprod/pionfire/

