
ECE 531 – Advanced Operating
Systems

Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 October 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Midterm the 20th

• Don’t forget fall break

1

HW#4 Review – Code

• Be sure your code compiles

• Note: timer running at 1MHz which is 10e6 Hz, not

2e20 Hz.

2

HW#4 Review – Question 1

• FIQ vs IRQ difference?

• FIQ banks some registers, so is faster (no saving),

• higher priority

• only one so don’t have to search for source

3

HW#4 Review – Question 2

• BASIC PENDING bit 19 is interrupt 57 which is UART.

• This info is in the manual but you have to consult two

tables (confusing)

• First table (which) says it’s GPU interrupt 57

• Second table says UART is interrupt 57

4

HW#4 Review – Question 3

• How to change modes?

• Write to the mode field of CPSR register.

5

HW#4 Review – Question 3

• Subtract 4 because it offsets by four when saving the PC

• Why? Historical reasons.

• Most likely original pipelined processor design it’s just

what the PC happened to be when an IRQ happened

and it was easier to handle in software than hardware

• Then they were stuck with this forever

6

Memory Management

• Until now we have used static memory location (hard-

coded at compile time)

• If we want to start running programs with fork/exec we

need to allocate memory for the new processes

• How does memory allocation work?

7

Various Types of Memory Management

• Application / Userspace

• Operating System

8

Application Memory Allocation on C/Linux

#include <stdio.h>

int global_x =5; /* data */

int global_y =0; /* bss */

int main(int argc , char **argv) {

int local_x =5; /* stack */

static int static_y =5; /* data */

static int static_x =0; /* bss */

char *heap_x=malloc (1024); /* heap or mmap() */

printf("Hello␣world\n");

return 0;

}

9

Compiler Optimization Note

• The compiler can (and will) optimize away memory

accesses whenever possible

• At -O2 optimization if you don’t use a pointer to a

variable it might only ever live in a register

• The old register keyword used to enforce this

10

Static Allocation – Data Segment

• Global and static variables that are initialized go in the

data segment

• Loaded directly from the executable

11

Static Allocation – BSS Segment

• Global and static variables initialized to zero go in the

bss segment.

• Uninitialized global/static variables also go in BSS

On Linux at least these will be initialized to zero even if

you don’t request it

You wouldn’t want actually uninitialized data on process

start up, huge security risk.

• These aren’t in executable, it just holds the total BSS

size request, and the OS allocates and zeros it at start

12

Dynamic Allocation – Variables on the
Stack

• Local variables go on the stack

• Stack auto-grows down

• Note: stack often has strict alignment rules 4? 16?

/* arm32 */

int q[1000];

sub sp , sp , #4000 @ 0xfa0

...g

add sp , sp , #4000 @ 0xfa0

bx lr

/* arm64 */

int q[1000];

13

adrp x0 , 0 <__abi_tag -0x278 >

sub sp , sp , #0xfa0

movi v2.4s, #0x4

add x1 , sp , #0xfa0

ldr q1 , [x0 , #2048]

mov x0 , sp

mov v0.16b, v1.16b

add v1.4s, v1.4s, v2.4s

mul v0.4s, v0.4s, v0.4s

str q0 , [x0], #16 // q0 = 128 bit fp

cmp x1 , x0

b.ne 7b8 <foo+0x18 > // b.any

ldr w0 , [sp , #60]

add sp , sp , #0xfa0

ret

14

Variables on the Stack – More

• Can you dynamically allocate on stack? alloca()

• Also variable defined arrays (gcc extension?)

int array[y];

• Downsides/Issues

◦ stack overflow attacks (show example)

◦ What happens if you return a pointer to a local variable

◦ Contents of uninitialized variables might have old data,

be not zero

15

Dynamic Memory Allocation – Heap

• malloc() is not a syscall, but a library call

• Generally the C library will request chunks of memory

from the OS, then hand it out in smaller pieces as

requested

16

The Heap

• “program break” is the address just above the data

segment.

• can allocate/deallocate memory by moving this boundary

• Kernel interface is the brk() system call which moves

the end of the data segment (essentially making the

heap bigger)

• brk(address) moves new end of data segment to

address if possible

• sbrk(size) moves break area by size

17

Dynamic Memory – mmap()

• Widely used modern method of getting memory to use

• mmap() initially mapped file into memory so can be

accessed with load/store memory accesses rather than

disk read/write

• You can specify ANONYMOUS access and it will back

with zeroed out memory instead, essentially letting you

allocate arbitrary sizes of memory

• In addition you can set extra constraints like READ

/ WRITE / EXEC to have it read only, read write,

18

executable (shared libraries are loaded this way, map

memory, copy in as executable)

• Can mark as SHARED to share pages between processes

for inter-process communication (IPC)

• MAP FIXED can be used to request it be loaded at a

specific address if possible

• MAP LOCKED can request not be swapped out

19

How malloc() Works

• Many ways to write malloc(), each C library has own

• Basically a big chunk of RAM is grabbed from the OS,

and then split into parts in a custom way.

• Do you just grab a chunk of mem and return a pointer?

Or is there extra info you need to track?

• The biggest problem is fragmentation, which happens

when memory is freed in non-contiguous areas.

20

dlmalloc – Doug Lea

• glibc uses ptmalloc based on dlmalloc

• Memory allocated in chunks, with 8 or 16-byte header

• bins of same sized objects, doubly linked list

• Small allocations (256kB?) closest power of two used

• Larger, mmap used, multiple of page size.

21

Manual vs Automatic

• With C you can manually allocate and free memory.

Prone to errors:

◦ Use-after-free errors

◦ Buffer overflows

◦ Memory Leaks

◦ ALL OF THE ABOVE CAN LEAD TO ROOT

EXPLOITS

• High-level languages such as Java will automatically

allocate memory for objects.

22

◦ The user never sees memory pointers.

◦ Unused memory areas are periodically freed via

“garbage-collection”.

◦ At the same time the memory can be compacted,

avoiding fragmentation.

◦ Problem? Slow, not real-time, can be complex

detangling complex memory dependency chains.

23

Pre-Fall-Break-Bonus

• “Pi-on-Fire” demo

• Runs on a Pi-1B on top of an OS based on the one from

class

• Won second place in the “modern demo” compo at

Demosplash 2019

• Chiptune music by DYA

• http://www.deater.net/weave/vmwprod/pionfire/

24

http://www.deater.net/weave/vmwprod/pionfire/

