ECE 531 — Advanced Operating

Systems
Lecture 18

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

15 October 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Midterm the 20th

Project Preview

e Project pdf posted to course website

e Can work in groups

e First deadline is project topic, due November 5th

e Status update before Thanksgiving. Requires short
iterature search

e Project presentations last week of class

e Final writeup due last day of classes (December 19th)
e List of topics in the handout on website

Kernel Memory Handling

e [he kernel also needs to manage memory

e Needs to allocate memory for processes and such

e Might need to dynamically allocate stuff in general
operation though that's sometimes discouraged (local
variables on stack much easier to deal with than
fragmentation issues from malloc() like allocations)

Detecting Memory

e How do we know how much memory we have?

o Firmware — ask the bootloader/firmware (but how does
it know?)

o Assume — if only running on a machine with a fixed
amount

o Probing — try writing a value to memory, then read it
back and see if it's the same
Might read a bunch before writing to avoid false
positives from bus capacitance

-y 4

Tracking Memory — Granularity

e What granularity should be used?

e Too small (byte granularity) too much overhead to track
it all

e Too large, then hand out much bigger chunks than
actually need

Tracking Memory — Data Structures

e There are various data structures used for tracking
available memory

Tracking Memory — Bitmaps

e Bitmaps are the simplest

e Bitmap of chunks of memory, each bit indicated
free/used

e Have to search bitmap and find N consecutive empty
areas for each allocation

e Lots of bit-fiddling though some architectures have
instructions (popcnt) that make this easier

o We'll see this is also used by some filesystems

Bitmap Example

e 2GB of memory, memory broken up into 1k chunks

e 32-bit system so each word 4 bytes

e 2GB/1k = 2MB entries to track, each one a bit, so
2MB /32 = 64k of integers array (256k total size)

e To find if memory address is used/free, take address,
/1024 /32 to get index in array, then use bottom 5 bits
to pick which bit to look at

Bitmap — How Many Blocks/Chunks
Needed?

e Want to allocate size 187 (1 block)

e Want to allocate size 15007 (2 blocks)

e Want to allocate size 60007 (6 blocks)

e Want to allocate size 81927 (8 blocks)

e ((size-1)/1024)+1 to find out how many blocks you need

Tracking Memory — Other Data Structures

o Free-lists, linked list of memory areas
o [rees

-y 10

Fragmentation

e Enough memory available, but split up. How can fix?

e Memory compaction. Swap everything out, bring it back
in (Relocating)

e Is this always possible? On Java? In C?

/Y 11

Fit Algorithms

e First Fit: scans bitmap, returns first block big enough
to meet request. Fastest.

e Next Fit: Picks up where the last first fit case left off
(optimization)

e Best fit: search entire map and find hole that fits it
best. Actually can cause more fragmentation, end up
with lots of tiny holes

e Worst Fit: always biggest hole. Not so great either.

e Quick Fit: separate lists for more common sizes

/Y 12

Fit Example

64kB memory

Oxf

Oxd

Oxb

Oxa

Ox7

0x6

0x5

0x4

0x3
Ox1

Memory Usage Bitmap
0101 0011 0000 0101

I = Used Memory

= Free Memory

Each page of memory is 4kB

13

Fixed Sized Allocation

e Memory Pool — fast — blocks of pre-allocated memory in
power of two sizes that can be handed out
fast to allocate/free
fragmentation

-y 14

Brief History of Memory Handling in
Operating Systems

15

Mono-Programming

e Simple mono-programming: just OS and one program in
memory at once (like DOS)

e Linear physical memory, assume you have all (or maybe
up to a limit set by OS)

e Hassle of DOS 640k low memory, games

/Y 16

Fixed Multi-Programming

e Multiprogramming: let you run multiple tasks at once.

e Fixed Partitions of memory available. Jobs queued.
When spot frees up job can run. Can have complex
scheduling rules out which size and priority to give to
jobs. Older mainframes (OS/MFT) used this.

e Relocations a problem

e Memory protection. Permissions on pages.

e Solution to both protection and permission in segments
(with base offset and range that are valid to access)

-y 17

Swapping

e Timesharing systems. All jobs not fit in RAM?

e Swapping: bring in each program in entirety, run it a
while, then when done writing all back out to disk.

e Paging: virtual memory.

-y 18

Memory Allocation in Linux

19

Buddy Allocator

e Used by Linux

e Pick a low size, say 4k, and a high size, say 1IMB

e When allocate, round up to the next power of two

e Search for free area that size. If not, scale up. If you
find one, split it into chunks until you reach the size
being looked for. Give it.

e When freeing, not only free but see if neighboring blocks
also free, if so, re-join them to bigger sized memory.

-y 20

Buddy Allocator example

e Want to allocate 7000 bytes

e Gets rounded up to power of two, 8192 (8k)

e Look for free 8k block. If found just hand it out. If not,
bump to 16k try again

e No 16k free, bump to 32k

e 32k found! Break it up to four 8k chunks, hand out one

e Later if that 8k chunk is freed, if nearby chunks are also
free, merge them together to create larger chunk

e This is designed to limit fragmentation

/Y 21

Linux — SLAB/SLOB/SLUB

e Have cache of commonly allocated structs
e Don’'t completely clear/free them when done, but leave
them pre-initialized

/Y 22

Linux — dynamic allocation (stack)

e Most code will try to do things on stack if possible

e Kernel stacks are small (why? Need to be contiguous,
fragmentation, etc)

e Back in the day they tried to fit in one 4k page, not
always work 8k. 16k now?

e Part of the problem was large structs being allocated,
but especially deep callchains. Sometimes be fine
iIn common case but then some obscure thing calls
filesystem /network /network-card /etc and it all adds up

-y 23

Linux — dynamic allocation (other)

e kmalloc()

e get_free_pages()

e vmalloc() — allocated virtual memory, avoids
fragmentation

-y 24

Linux — Memory Zones

e Not all memory is equal

e Not all is in reach of DMA

e 32-bit processes can't access memory above 4G

e Normal vs HIMEM (historical on Linux?)

e NUMA — sometimes want allocations to be close to CPU
core

-y 25

Linux — Memory stats

e /proc/buddyinfo
e /proc/zoneinfo

26

